Wind Waves Notes Solutions - 1

1.1
(a) Fetch is the distance over the surface of the water on which a wind blows.
(b) In a dispersive medium the speed at which a wave travels depends on its wavelength.
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1.2 According to the table on page 9 the most common wave height is 3-4 feet.
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1.3 Starting with L = 272 this becomes

g (2’

k 2r \ w

1_9

Eow?

w? = gk

While ¢ = % becomes

c=4/2

k

2_9

Tk



Wind Waves Notes

2.1 Use the definition of pressure:

F m
Pelephant = 1= 27sz = 1.6 x 10°Pa
F mg 5
Pwoman - Z = ﬁ =117.0 x 10°Pa

Solutions - 4
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2.2 The elephant will apply a force equal to it’s weight mg. Thus in order for the air inside to
support the elephant it must be at a pressure of at least P = F/A = mg/A = (1000kg)g/(1.5m x
2.0m) = 3,267 Pa. We need to compare this with the pressure we are able to produce (0.5atm).
Converting we find that 0.5atm = 50, 600Pa. Thus one elephant will not be a problem.
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_ _ AP _ 0.5(1.013x10°Pa) __
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2.4 Since the box of water is not moving we know that the acceleration is zero. Thus we know
that XF =0 —» Y F, = 0. Thus let us add the vertical components of the forces acting on the
box of water. The forces on the sides of the box because of the pressure of the water have no
vertical component so we just have the force due to the pressure on the top and bottom (Fiop
and Fyottom) and the force of gravity (Fg). Thus

YF, =0
Fiottom — Frop — Fa =0
Fiottom — Fiop — [mg] =0
[Phottom Abottom] — [PtopAtop] —[pV]g=0
Poottom[bc] — Prop[bc] — p[hbclg = 0
Poottom — Prop — phg =0
Poottom — Prop = pgh
AP = Piop — Phottom = —pgh = —pgAy
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2.5 First convert height to meters: 730ft x 312% = 223m. Now we note that the pressure
difference between the water side and the air side is about the same as the difference between

the surface of the water and at a depth of 223 meters below the surface.
AP = —pgAy = —(1000kg/m?)g(—223m) = 2.23 x 10°Pa
F =AP A= (223 x 10°Pa)(1.0m?) = 2.23 x 10°N
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2.6 Use the pressure equation:
AP = —pgAy
Puin = Pica = —pg[Ymin — Yseal
= —(1.29kg/m?)g(1173m) = —1.48 x 10*Pa
For going underwater we find the following.
AP = —pgAy
Poca — Punder = —pg[Ysca — Yunder]
= —(1025kg/m?)g(8854m) = —1.18 x 10"Pa

Solutions - 9
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2.7 The pressure in the box will be the same as the pressure where the box was sealed. So
assuming that the diver lives near the sea, the pressure inside is about the pressure of the air
above the sea. The difference in pressure between the outside and inside of the box will be the
same as the difference in pressure between the bottom of the sea and the surface of the sea.
AP = —pgAy = —(1025kgm?)g(—200m) = 2.0 x 10Pa The force on one face of the box due
to the difference in pressure is F' = AP A. There are three different size faces of the box, with
areas 0.02, 0.03, and 0.06 square meters. So the forces are 4.0 x 10*N, 6.0 x 10*N, 1.2 x 10°N.

10
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2.8 Let P4 be the pressure in container A, and P the pressure in container B. The pressure
at the top of the water on side A must be essentialy the same as the pressure in container A
because the density of air is so small. Thus we can say the following.

AP = —pgAy
Py — Pg = —pg[ya — ys]
= —pg[—10cm]

= —(500kg/m?*)g[—0.10m] = 490Pa
So we see that the pressure in container A is 490Pa greater than the pressure in container B.

11
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2.9 The volume rate of flow is the volume of water per second that passes through the stream.
In a time dt the stream moves a distance of vdt thus a volume dV = Awvdt (where A is the
cross-sectional area of the stream) passes down the stream in a time dt . Thus the volume per
time is simply % = Aw. In this particular steam this gives a volume rate of flow of

dv

T Av = (4.2m x 0.85m)(0.622) = 2.2m? /s

Further down the stream has the volume rate of flow is the same (assuming that no water is

added or lost from the stream). With d being the depth of the stream and w the width we can
write the following.

dv dv/dt

=AW =wdv — dzi/

E wo! = 0.68m

12
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Solutions - 13

2.10 After the water leaves the nozzle it is under free fall so that we can use the projectile

motion equations to find the initial velocity from the trajectory.

T, =0 Yo = (1.0m)

zy = (5.0m) yr =0

Vo, = Vo CO845° = 1,/V/2 Vo, = UoSin45° = Vo /V2
a;, =0 ay = —g

Now consider the horizontal motion.
Tf=To+ Vo, t+ %ath
Vo
zr=0+—7=t4+0
f \/i
t :L'f
— =
V2 Vo
Now put this result into our equation for the vertical motion.
Yr = Yo + Vo, t + gayt’

Vo
0=yo+ —
Yo

2
T
O:yo—I—xf—g(f)

g
Yo+ Ty
With this velocity we can find the volume rate of flow.
dV/dt = Av, = 1r?v, = 8.0 x 107 °m?/s

t—Lgt?

Vo =T =6.47

To spread 2.0 cm across an area of 10m x 10m = 100m? we need a volume of water V =

(0.02m) x (100m?) = 2.0m®. Since V = %At we can calculate the time.

t= dVV/dt = 2.5 x 10%*s = 6.9hours

13
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2.11 The lift of the wing is due to the pressure difference between the top and the bottom.
Since the pressure on the bottom is greater, the force on the bottom is greater.

Figg = Fp, — Fy = BbbA— P A= (P, — P;)A
With this relationship we can find the pressure difference.
P, — P, = Fiizt/A = 1000Pa
But this pressure difference is caused by the different air speed on the top and bottom. Bernoulli’sfi
equation expresses this relationship.

AP+ 3pv° + pgy] = 0
(Py— P) + %p(vg - vtz) +pg(yp —y:) =0
(Py = P:) + 5p(vi — vf) + pg(0) = 0

2
— Ut = ;(Pb-Pt)—f—Ug

=302.67
Notice that this is less than one percent faster than the air on the bottom.

14
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2.12 We have two relationships for the flow in the tube; the equation of continuity, AlvA] = 0

w
UwAw - UnAn =0 7 Up = A Vw
n

and Bernoulli’s equation.

A[P + 3pv° + pgy]
(Puw = Pn) + 5p(v5, = v3) + pg(yu — Yn
(Pw = Pu) + 3p(v3, — v3) + pg(0
(Pu = Po) + 302 = 02) =0
We have assumed that the pressure sensors are close together so that the difference in elevations

between the two sensors is small; y,, — y, ~ 0.
Combining the equation of continuity and Bernoulli’s equation we find the following.

2
(Pw—Py)+4p (vi - igwﬁ,) =0

1 1
From this we can solve for the volume rate of flow.
dV

E:A’U:vaw:

With the given data this equation gives a volume rate of flow of 1.45 x 10~3m3 /s or 1.45 liters
per second.

15
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2.13 We can see from the figure that the sum of the two forces is in the forward direction.

Force
water-wing

Force
air-wing

16
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2.14 Consider a point inside the house just under the roof, and a point outside the house just
above the roof. These points are nearly at the same elevation so that Ay ~ 0.

A[P + $pv* + pgy] =0
(P = Pout) + 3p(vi, — vau) + pgAy =0
(P — Pout) + 2p(0%2 = 02,) + pg0 =0
— (Pin — Pout) = %P'Ugut
The net force due to the air pressure is
Foet = Fin + Fou

y: Fnet:E *Fout
= PpA - PoutA
= (-Pl - Pout)A

= 1pv2 A =6.0x10'N
This is positive so the net force is upward. The force is about ten times more than the weight
of the roof, and thus it is harder hold the roof down than it is to hold the roof up.

17
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2.15 Let position 1 be in the small section and position 2 be in the large section. Let us start
by using the continuity equation to find the velocity in the large section.

Avy = Asvp

— vy = é?)l = ﬁm = (Tl)zm = <1>201 =203
Ay 3 9 2 s
Now we can use Bernoulli’s Equation to find the pressure difference.
AP+ 2pv* + pgy] =0
(P2 = P1) + 5p (v3 = vi) + pgly2 — y1) =0
(P2 = P1) = —5p (v —v7) — pg(y2 — y1)
=—[5 (3 —}) +9(y2—w1)] p
== [3(2%)°= (8%)?) + 9(3m)] (680kg/m?)
= 480Pa

So we see that the pressure is 480 Pa greater in the large section than it is in the small section.

18
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2.16 We start with Bernoulli’s equation.
A[ipv® + P+ pgz] =0
10 (Viow — Vinss) + Polow — Prast +0 =0
— Paow — Prast = %P (Uf2ast - Uslow)
= % pv’de
— Fiitt = PajowAstow + Prast Atast
= PaowAn + Prast A(—1)
= (Psow — Prast) AN
— Fiitt = (Patow — Prast)A
= % pv? Ade
= % pv2ACY

where A is in the direction of the inward normal and n = AS—;{’W.

Solutions - 19

19
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3.1 Ship design is dependent on having a good estimate of the biggest wave one might encounter
at sea. So engineers who design ships do require a more detailed description of the surface than
is provided by the spectra analysis, and reason d is not justified.

20
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3.2 The most common techniques to measure waves at sea are based on either a buoy or a
wave pole. The buoy measures its own vertical position as a function of time (typically every ?
second) by measuring its own vertical acceleration (to be integrated twice to obtain the vertical
position) or by using GPS. The vertical location of the sea surface along a wave pole is measured
by measuring the change in electronic characteristics along a vertical wire at the sea surface (e.g.,
electrical resistance).

21
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3.3 With a buoy, directional wave information can be obtained by measuring the pitch-and-roll
of the buoy (with inclinometers) or the yaw-and-sway of the buoy (with horizontal accelerometers
or GPS). With a group of wave poles (at least three), directional wave information can be
obtained by measuring surface slopes (in an array with small horizontal dimensions) or phase
differences (in an array with larger dimensions).

22
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3.4 The instruments that are used to measure waves from satellites are the synthetic aperture
radar (SAR) and the radar altimeter. The (synthetic) antenna of the SAR is large enough that
it can distinguish individual waves. A SAR image therefore shows an image of individual waves
(essentially in grey tone) but the transformation to a surface elevation is highly non-linear and
has not yet been achieved. The antenna of an altimeter is much smaller than that of a SAR and
the foot print at the sea surface is of the order of 1 kilometer in diameter, which is too large to
distinguish individual waves (only an average roughness of the sea surface in the foot print can
be estimated, from which the significant wave height can be inferred).

23



Wind Waves Notes

Solutions - 24

3.5 The figure below is the result of breaking the data into chunks of 256 and doing the FFT
for each of these chunks and then taking the average of the square of the amplitude at each
frequency.

mean power

0 0.1 0.2 0.3 0.4
f [Hz]

II—‘ 1
o ol
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mean power [dB]
N
o

-25 : : : =
0 0.1 0.2 0.3 0.4
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The following Matlab code will graph the power spectral density.

[1]
[2]
[3]
[4]
(5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]

function graphBuoyPSD()

S = load(’buoy.mat’);
z = S.buoy/100; % convert to meters since original data was in cm
fs = 1.28;
Nfft = 256;
[P,f] = myPSD(z,fs,Nfft);
figure(1)
plot(f,P)
x1im([0,0.41)
texText (°f [Hz]’,’x’)
texText (’mean power’,’y’)
graphToPDF(’ . ./buoyPSD.pdf’,4,3)
figure(2)

24
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[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[1]
[2]
(3]
[4]
[5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

dB = 10%logl0(P/max(P));

plot(f,dB)

texText (°f [Hz]’,’x’)

texText (’mean power [dB]’,’y’)

ylim([-25,1])

x1im([0,0.4]1)

graphToPDF (’ . . /buoyPSDlog.pdf’,4,3)
end

function [pout, fout, Ns] = myPSD(data,fs,Nfft)

% Computes the power spectral density of the data
% which is recorded with the sample rate fs.

% The data is cut into blocks of size Nfft.

% It is assumed that the data is real so that the
% negative spectrum is redundant and ignored.

M = size(data,2);

Nh = Nfft/2;

L = length(data);
Ns = floor(L/Nh)-1;
%w = hamming (Nfft);
w = hann(Nfft);

pw = zeros(Nh,M);

for m = 1:M
for n = 0:Ns-1
Noff = nxNh;

H = fft(w.*detrend(data(Noff+(1:Nfft),m)));
pw(:,m) = pw(:,m) + abs(H(1:Nh))."2;

end

end

df = fs/Nfft;

fout = df*((1:Nh)-1);
pout = pw/(Ns*Nfft);

% In the above the Ns is for the mean and the
% Nfft is for the scaling of the FFT.
end

Solutions - 25

25
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3.6 This code solves the problem.

[1] function backscatter(par,type)

[2] % The input parameter "type" is a character a,b,c,d,or e.
[3] % The input parameter "par" depends on the type, look at
[4] 7% the function makeSurf() to see what the "par" is.

(5]

[6] N = 2000; % the number of grid points (1-D)

[7] angle = 0.01; % the antenna beam width from center

[8] h = 717e3; % altitude of satellite

[9] dr = 0.5; % range resolution.

[10]

[11] % lay out the spacial grid on the sea surface.

[12] x_max = 1.25%h*angle; % Size of grid

[13] x = x_max * 2x((0:(N-1))/(N-1)-0.5); % The grid array

[14] y = x’;

[15] rho2 = x.72 + y."2; % Distance from the center squared.
[16]

[17] alpha = 0.5/(h*angle)"2; % A temporary constant

[18] G = exp(-alpha*rho2); % The antenna gain

[19]

[20] =z = makeSurf(x,y,par,type); % Compute the surface height.
[21] r = sqrt((h-z)."2 + rho2); % Range to satellite.

[22] d = r-h; % Subtract altitude.

[23]

[24] d_min = -20%dr; % Location of first bin.

[25]

[26] Np = 128;

[27] dgrid = d_min+(0: (Np-1))*dr; % Create range bins.

[28]

[29] P = NaN(1,Np); % Allocate the power array.
[30]

[31] for m = 1:Np % Loop over range bins.

[32] d_target = dgrid(n); % The range bin in this round.
[33] % The next line does the magic.
[34] inBin = abs(d-d_target)<(dr/2); % Array of 1’s and 0’s.

[35] P(n) = sum(sum( G.*inBin )); % Power in bin n.

[36] end

[37]

[38] figure(2)

[39] plot(dgrid,P,’.’) % plot the power versus range
[40] ylim([0,1.1*max(P)]) % set the range of the plot
[41]

[42] end

[43]

[44] 7 This function creates the surface height array.
[45] function z = makeSurf (x,y,par,type)

[46] H = par(1);

[47] Nx = size(x,2);
[48] Ny = size(y,1);
[49] switch type

[50] case ’a’

[51] z = 0;

[62] case ’b’

[53] T = par(2);

26
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[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[661]
[67]
[681]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]

theta = par(3);
k = 4%pi~2/(9.8%T"2);

kx = k*cosd(theta);

ky = k*sind(theta);

z = 0.5*H*cos (kx*x +ky*y);
case ’c’

z = Hx(rand(Ny,Nx)-0.5);
case ’d’

z = 0.25xH*randn(Ny,Nx) ;
case ’e’

Hs = par(2);

T = par(3);

theta = par(4);

k = 4%pi~2/(9.8%xT"2);

kx = k*cosd(theta);

ky = k*sind(theta);

z = 0.5*Hs*cos (kx*x +ky*y);
figure(10)

imagesc(z)

z = z + 0.25*%H*randn(Ny,Nx) ;

end
figure(11)
imagesc(z)
end

Solutions - 27

27



Wind Waves Notes Solutions - 28

4.1 First consider a bug in the water at a distance a from the center of the bucket. The
position of the bug will be

¥ =acoswt T+ asinwt ¢

This implies that
dr

U= = —wasinwt & + wacoswt §+ 02

dt
=—wry T +wry 4

Thus when the bug is at the position (z,y) it has velocity
U=—wyT+wry

and thus since ¥ and @ are the same when they are in the same place
U= —wy &+ wry

Now we can compute.
L, N N o, 0. 0, 0 0
- V=(~wyi+twey) |=—t+=—0+2)=-wy— +wr—
ox 0z Y

and

d(—wy & ) d(—wy & )
— (wydtwrg) 0wy +ws )

Or oy
_ 0w g) O(—wy )
= —wy e + wx ay
2

=~y — wiad

= —w?(z2 + yi)

and so

This is pointed toward the center as expected and since w = 7 the magnitude is wlr = ﬁ—ir =2

which is also what we expect for circular motion. Now we can compute the curl. '
V xid= (85:+8:Q+32) X (—wy T+ wz §)
ox dy 0z
0

= —A+£A X (~wy T+ wz 9)
= axx 5‘yy wYy T+ wry

—gix (—wy &+ wz A)—i-gAx (—wy &+ wz §)

a . 0 .
—%xx(o—i—wxy)—i—a—yyx(—wyx—l—o)

= —wr Z+ —wy?z
+ayy

Ox
—wiZitw?i

=2w 2

28
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So that
Ux (VXu)=2widxZz

=2w (—wy & +wx §) x 2
=2w (wy § +wz &)
=27 (y g +u )

Thus the RHS of 1V (- %) = (4~ V)d +

x (V x @) is
» 2

i) = —wF + 2w = T
Now for the LHS

Solutions - 29

29
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4.2 Starting the the LHS.
V- [pi] = 9;[pi];
= u;0;p + pOyu;
= w;0;p + pdiu;
=u-Vp+pV-u

30
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4.3 Let’s start with writing out the k-th component of the RHS.
[%V(fﬂ ) — (4 - V)ﬁ]k = %Gk(ﬂ @) — (@ - V)uy

= 10, (wiu;) — (u;0;)uy,

= u;Opu; — u;Ozuy,

= Z [u;Opu; — u;Ojup]
£k

= Z [ulakul — uz&uk] + [ukﬁkuk — ukﬁkuk]
£k

= Z [u;Opu; — u;Ojuy]

Now let us work on the k-th component of the LHS.
[’J X (V X ’J)]k = Ei]‘kui(v X 12)]

= <C:ijkui‘fnm]’a’rzurn

= 5ijk5nmjuianum

= _5ijk5njmuianum
In this expression there is an implicit sum over n,m,i and j but as always most of them give
zero. The only terms that we need to be conserned with are those for which both e;;, # 0 and
€nmj 7 0. In particular in the sum over n and m the only terms that are not zero is when
(n,m) = (k,1) and when (n,m) = (i, k), since there is a common j the two Levi-Civita symbols.

Thus
[t x (V X U)]), = —€ijrerjitiOptli — EijrCijrtiOiu

= €4kEijkUiOpUi — €i5kEijk Ui Ol

€ijkEijk [WiOku; — u;O5u]

#k #k and #i

=> > cijnfijh [wiOku; — w0y
( J
#k

= Z [uﬁkul — ulazuk]

So we see that the LHS and RHS are the same.

31
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4.4 Start with the LHS.
[V X (@ x V)| = €ij10; [T x U],

= €1k 0i[Enm;UnUm)
= €;jkEnm; 0 [UnVm]
= —€ijkEnjm0i[UnUnm]
= —€jkEnjm|[UmOitln + Up0iUr,]
= —€ijkEkjs [ViOiur + ur0;v;] — €4jk€i5k VR0 us + u;0;Uk)
= €;jk€ijk [ViOiug + uR0;v; — VO U; — u; 0V

= Z [vlc?‘luk + up0jv; — vROju; — uﬁlvk]

i#k

= Z [vlazuk + up0;v; — vEOju; — uzal’l]k] +0
i#k

= Z [vz@uk + ’U,kai’l)i — v;ﬁiui — ulalvk]
i#k

+ v Ok, + Uk ORVL — VEORUE — UROLVL
= Z [vi&uk + up0jv; — vpOju; — uiaﬂ)k]
7

= v;0;uy, + uR0;v; — VRO u; — U0 Uk
= ’Uiaﬂug + uk@vi - vkaiui — ul@ivk
= u0;v; — vOju; + v;0u — u; Oy

Thus
V x (@ x ¥) = [V x (4@ x 0)], éx

= (ur0iv; — VrOsu; + V;Ojup, — ;i O7vy) éy
= Up€LO;V; — VR0 U; + V;0;uR €l — w;0; Uk
=4V -¥)—0(V @)+ (0 V)i—(d- V)T

32



Wind Waves Notes

4.5 First we compute the divergence.
(a)

0

So this satisfies the equation of continuity for an incompressible fluid.

(b)

V-i=V-(~wy &+wz§) =—(—wy) +

L Oup | Ouy
Vi e Yoy
=w+ (—w)

So this satisfies the equation of continuity for an incompressible fluid.

()

L Oug | Ouy
Vou= Ox oy
= —2ax + 2ax
=0

So this satisfies the equation of continuity for an incompressible fluid.

(d)

L Oug  Ouy
Vo= ox Jy
= cosh(kx) cosh(kx) — cosh(kz) cosh(kx)
=0

So this satisfies the equation of continuity for an incompressible fluid.

Solutions - 33
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Solutions - 34

4.6 Cylindrical coordinates (r, 6, z) will be helpful here. There is nothing special about any

particular angle 6, so we expect the pressure to depend only on r and z, and not #. Thus

_ 9P 10P; 0P,

VP =5+ e T a7

Thus the equation of motion

ou 9 ., . VP .
E—I—§V(u )—ux(qu)+7+gz:O
becomes
o, 1 /OP. OP, R
—wr+ ; ET + 52 +gz2=0
If we look at the Z direction we find that
oP
- = —pg — P = —pgz+ f(r) + constant
z
while for the 7 direction
P
aa— = pw’r — P = 3pw’r? + h(z) + constant
”

Thus we see that
P= %pw%z — pgz + constant

34
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4.7
(a)

U= —wy T+ wr gy

First we note that a 5;U =0 and u, = 0 so that

L (Ouy Oug\
qu-(ax ay)z-(w (—w))z=—2w 2

So there is no scalar field who’s gradient is .

(b)

U=wr T—wy gy

(f;;y aaif)g(oméo
So yes we can write this as the gradient of a scalar field. Thus we have that
99
oz
9¢
dy
So it appears that the function

V Xxt=

=u, =wr — ¢=itwr’+ f(y)

¢ = gw(a® —y°)
does the trick.
(c) With
i =a(y? —2%) &+ 2azy §

L (Ouy,  Oug\ . .
VXU—(ax - ay)z—(2ay—2ay)z—0

So yes we can write this as the gradient of a scalar field. Thus we have that

& = al? ) — 0= alay’ — L) + (y)
g—zzuy=2aa@y — ¢ = axy® + h(x)

So the function
¢ = afzy® — 32°)
does the trick.

(d)

@ = sinh(kx) cosh(ky) & — cosh(kz) sinh(ky) ¢
L (Ouy,  Ouy ) .
qu_(@x - 3y>z
= (—sinh(ka) sinh(ky) — sinh(kz) sinh(ky)) 2
= —2sinh(kz) sinh(ky)2

So there is no scalar field who’s gradient is .

Solutions - 35
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4.8

(a) The BC at the bottom is

9¢
n-Veo| _ ,=2-Vo| _ =
am e ol =2
= kA cos(wt) sinh(k(z + d)) cos(kx — D)’ZIid
= kA cos(wt) sinh(0) cos(kx — D)
-0
So the BC on the bottom is ok.
(b) First the condition at 2 = 0.
) . _ 99
0=mn- v¢|Jc:0 =T v¢|z:O - ox -
= —kAcos(wt) cosh(k(z 4+ d)) sin(kx — D)’w:O

= —kAcos(wt) cosh(k(z + d)) sin(—D)
This must be true for all ¢ and z so we need that sin(—D) = 0 which means that D = nw. We

choose D = 0 without loss of generality since the constant A and be positive or negative. So

now have

¢ = Acos(wt) cosh(k(z + d)) cos(kx)

Now for the condition at z = L

0=n

= —kA cos(wt) cosh(k(z + d)) sin(kz)|
= —kA cos(wt) cosh

’ V(b’m:l/ =T vd)|m:L -

_ 99
oxr|,_,

(k(z+ d))sin(kL)

— sin(kL) =0
— kL =nm

nm
k=t

So k must be a multiple of 7/L.

L

(¢) We start with the Dynamic BC

o¢ _
|:at:| z=0 = ’
1 [o¢
= ; |:8t:| z=0
! [—wAsin(wt) cosh(k(z + d)) cos(kx)],_,
g

= % sin(wt) cosh(kd) cos(kz)

oy w?A

% g cos(wt) cosh(kd) cos(kx)

Solutions - 36
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Solutions - 37
(d) Now we check the kinematic BC.

991 _dn_,
oz],_, Ot

9| _ In
- [82] z=0 a ot
. w?A
— kAcos(wt) sinh(kd) cos(kz) = —— cos(wt) cosh(kd) cos(kzx)
g
W2
— ksinh(kd) = — cosh(kd)
g
— gktanh(kd) = w?

So we see that there is a direct relationship between k and w that also depends on the depth d.
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4.9 We use the definition of ¢ and compute.
V2 = V?(a1¢1 + azd2) = a1V3¢1 +aaV3¢a = a1 -0+ az-0=0

In a similar way

{gf} z=—d - |:aaz(a1¢1 - a2¢2):| z=—d

- [‘“az *‘%zl_d
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4.10 With ¢ = E cosh(cos€.

(a) 0o 06
Vo= oz T &Z
0. .09,
~ Mot e
= —kFE cosh(sin&z + kE sinh ( cos £z
(b) 2
IVo|" = Ve -Vo
= k*E? (cosh2 ¢ sin® € 4 sinh? ¢ cos? 5)
= k?E? ((sinh2 ¢+ 1) sin? € + sinh? ¢ cos? f)
= k*E? (sinh® ¢ + sin® ¢)
(c) o6 0
3 = 5 [E cosh ¢ cos €]
dE 0
= cosh ( cos& + Ecosh(a[cosﬁ]
_dE 08
= cosh ( cos& — Ecosh(smfa
dE . .dD
= cosh ( cos€ + Ecosh(smfﬂ
= cosh ( (dE cos€ + ECZ—D smf)

Solutions - 39
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4.11 We start with the Dynamic BC
5

¥ =0
at:|z-0—i_g77

el
z=0

glot

1
_ _E [wE cosh (sing],_,

E
= _w? cosh(kd) sin &

2
% _wE cosh(kd) cos &
Now we check the kinematic BC.
[&q _on_,
0z, , Ot
o¢ _On
[82] 2=0 S ot

— kEsinh(kd)

2

E
cosé = v cosh(kd) cos &

2

— ksinh(kd) = % cosh(kd)

— gktanh(kd) = w?
So we see that there is a direct relationship between k and w that also depends on the depth d.

Solutions - 40
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Solutions - 41

4.12
9 w g tanh(kd) w g tanh(kd)
w® = gktanh(kd) — 2= - e
This
Voo = lim v, = /2
o d—oo P k
While
w? = gk tanh(kd)
0 [ o 0
— 3 [w?] = i [gk tanh(kd)]
Ow gkd
— 2w— = gtanh(kd) + ————
Yok T (kd) cosh? (kd)
Ow  gtanh(kd) gkd
E— = —_—— =
Y9~ Dk 2w 2w cosh? (kd)
vy _ gk tanh(kd) gkkd
vy 2w2 2w? cosh? (kd)
1w
"~ 2 2cosh?(kd) tanh(kd)
1,k
2 2cosh(kd)sinh(kd)
1,k
2 sinh(2kd)
40 T T T T
30+ 1
2
~
E 20} :
3
>
10 + 1
o L L L L
0 200 400 600 800 1000
A [m]
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Up/ Voo

vg/Up

Solutions -

0 0.2 0.4 0.6
d/\

0.8 1

d/\

0.8 1

42
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4.13 Here is the code that makes the following graphs.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8l

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[261]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

function makeGraph2(dOlambda)

dx = 0.01;

z0lam = (-dOlambda:dx:dx);
x0lam = (0:dx:1);

xi = 2xpi*x0lam;

zeta = 2*pix(z0lam+dOlambda)’;
phi = cosh(zeta)*cos(xi);

figure(1) Y the contour graph
plot(x0lam,-dx*sin(xi)) % plot surface wave
hold on

contour (x0lam,z0lam,phi,20) % plot contour
texText (’$z/\lambda$’,’y’) % add lables
texText (’$x/\lambda$’,’x’)

axis equal

hold off

name = sprintf (’contour’03d.pdf’,100*d0lambda) ;
graphToPDF (name, 1+4, 1+4*d0lambda)

figure(2) % the contour graph with velocity field.
dx = 0.05;

plot(x0lam,-0.01*sin(xi),’k’) % plot surface wave
hold on

contour (x0lam,z0lam,phi,20) % plot contour

z0lam = (-d0lambda:dx:0); % compute velocity field
x0lam = (0:dx:1);

xi = 2xpi*x0lam;

zeta = 2*pi*(z0lam+d0lambda)’;

ux = -cosh(zeta)*sin(xi);

uz = sinh(zeta)*cos(xi);

quiver(x0lam,z0lam,ux,uz) % plot the velocity field
ylim([-d0lambda,0.01])

axis equal

hold off

name = sprintf (’contourQuiver%03d.pdf’,100*d0lambda) ;
graphToPDF (name, 1+4, 1+4*d0lambda)

end

Here are the contours. Blue is low and yellow is high.

Solutions - 43
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Here are the contours with the velocity field overlay.
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4.14 Taking the limits we find the follow.

. ) g tanh(kd) \/
lim v, = lim {/ ¥———— =/ =
kd—0 kd—0 k

v 1 kd
kégi)vp kégh){Q +_sinh(2kd)}

Solutions - 47

This code is what made the graph.
[1] function makeGraph3()
[21] 4 = [10,30,100,300];
31 g = 9.8;
[4] N = 100;
[5] 1lam0 = 1;
[6] lamN = 1000;

[7] lam = lamOx*exp((log(lamN/lam0)/N)*(0:N))’;
8] k = 2xpi./lam;

[9] omega = NaN(N+1,length(d));

[10]

[11] for n = 1:length(d)

[12] omega(:,n) = sqrt(g*k.*tanh(k*d(n)));
[13] end

[14] T = 2*pi./omega;

[15] T_inf = 2xpi./sqrt(gxk);

[16]

[17] plot(lam,T_inf,’k’)

[18] hold on

[19] plot(lam,T)

[20] hold off

[21]

[22] texText(’$\lambda$ [m]’,’x’)
[23] texText(’$T$ [s1’,’y?)

1000
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[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

ylim([0,60])

texText (’$d=10$m’, g’ ,400,55)
texText (’$d=30%m’, g’ ,600,45)
texText (’$d=100$m’,’g’,730,34)
texText (’$d=300$m’,’g’,800,26)
texText (’$d=\infty$’,’g’,850,21)
graphToPDF (’period.pdf’,5,4)

end

Solutions - 48
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4.15 This code solves the problem using the second order Runge-Kutta method.
[1] function velRatio = integrateRG2(ka,N,beta0)

[2] Dbeta = NaN(N+1,2);

[3] beta(l,:) = betal;

[4] dt = 2xpi/N;
(6] t = (0:N)xdt;
[6] for n = 1:N
(7] betaMid

beta(n,:) +vel(kaxbeta(n,:),t(n))*dt/2;

[8] tMid = t(n)+dt/2;
[9] beta(n+1,:)= beta(n,:) +vel(kax*betaMid,tMid)*dt;
[10] end

[11] figure(1)

[12] plot(beta(:,1),beta(:,2))
[13] axis equal

[14] texText(’$r_x/a$’,’x’
[15] texText(’$r_z/a$’,’y’
[16] texText(sprintf(’$ka = %0.3f$’,ka),’t’)
[17] dBeta = beta(end,1)-beta(1,1);

[18] wvelRatio = ka*dBeta/(2+*pi);

I~ ~

[19] end

[20]

[21] function u = vel(ab,t)

[22] x = ab(1)-t;

[23] z = ab(2);

[24] u = exp(z)*[-sin(x),cos(x)];
[25] end

[1] function graphVelRatio(ka)
[2] N = length(ka);
[3] wvelRatio = NaN(1,N);

[4]

[6] for n = 1:N

[6] velRatio(n) = integrateRG2(ka(n),100,[0,0]);
[7] end

[8] graphToPDF(’trajectory.pdf’,4,4);
[9] figure(10)

[10] plot(ka,velRatio)

[11] texText(’$ka$’,’x’)

[12] texText(’$v_d/v_p$’,’y’)

[13] graphToPDF(’velRatio.pdf’,4,3)
[14] end

49



Wind Waves Notes

r./a

v/ vp
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0.04
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0.01

ka = 0.010
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ry/a
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Solutions - 50
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4.16 In this case d > ) so that 2kd > 47 and e~2*¢ < 0.0000035 so we can use the approxi-

mation that %@’;d) ~ eF* and % ~ eF* and
il = Ve = ka vye" [~ sin&d + cos 4]
(a) The trough is where n = —asin ¢ is minimum, which is when & = /2, so that at the surface
the water .
2 = ka € [-14 + 03]
Up
= —ka "3
= —ka "V
= —ka e "3
(b) The peak is when 7 is a maximum so §{ = —m/2.
Y ka e [~ sin(—7/2)& + 02]
Up
= ka e"z

(c) We see that the ratio only depends on the quantity ka, thus the ratio of the amplitude and
the wavelength.
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4.17 We start by writing out what we know.

n=—asin{ — @:awcosﬁ AND o = —kacos&
ot oz
aw cosh(
= T smb(kd) ¢
d¢  —cosh(sing

9z~ ™ sinh(kd)
@ _ sinh(cos&z

9. sinh(kd)

.12 . 92
9 o os8inh”(+sin”§
VoF =’ — )
By pugging in we find that the BCs become.
w? [ cosh Cn 1 sinh? ¢, + sin ¢
— | ———tsiné + ka"] =sin¢ Dynamic
gk Llnh(kd) §+3 sinh?(kd) < Dy
sinh ¢, cos & cosh ¢, sin & . .
—k bttt L/ St K t
[ sinh(kd) acosé sinh(kd) cosé& inematic

with ¢, = kn + kd = —kasin{ + kd. Now we also use the restriction that w? = gktanh(kd) to

convert the dynamic BC to the following
sinh? Cn+ sin? ¢

cosh(, . 1 ) ]
1 1 — D
[cosh(kd) SN ok Thd) cosh(kd) ] sing - Dynamic
sinh ¢, cos £ cosh(,sinf| . .
[ sinh (kd) kacos& Sinh (kd) =cos¢ Kinematic

We notice that the terms we ignored before all have a coefficient ka while all the other terms

are of order 1.

ka = 0.100
15 T T T T T T
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[1]
[2]
[3]
[4]
(5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

ka = 0.010
15 T T T T
1
05+
0
-05
LHS D
rrrrrrrr RHS D
-1r LHS K
-------- RHS K
1.5 : : : :
0 1 2 3 4
x/A

function sanityCheck(ka)

kd = pi;

xi = 0:0.05:2%pi;

s = sin(xi);

c = cos(xi);

zeta = -kaxs+kd;

cz = cosh(zeta);

sz = sinh(zeta);

cd = cosh(kd);

sd = sinh(kd);

LHS_D = cz.*s/cd + 0.5%kax*(sz. 2+s.72)/(sd*cd);
RHS_ D = s;

LHS_K = sz.*c/sd - ka*c.*cz.*s/sd;
RHS_K c;
plot(xi,LHS_D,’r’,xi,RHS_D,’:r’)
hold on

Solutions - 53
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[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

plot(xi,LHS_K,’b’,xi,RHS_K,’:b’)

hold off

leg = {’LHS D’,’RHS D’,’LHS K’,’RHS K’};
legend(leg,’location’, ’southwest’)
texText (’$x/\lambda$’,’x’)

texText (sprintf (*$ka = %0.3£f$’,ka),’t’)
filename = sprintf(’comp’%03d’,1000%ka) ;
graphToPDF (filename,4,3)

end

Solutions - 54
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5.1 The following code produced the graphs.

Solutions - 55

[1] function graphError2(ka)
[2] =xi = 2*pi*(0:0.01:1)’;
[3] S = sin(xi);
[4]
[6] eta = NaN(length(xi),3); % really eta/a
[6] eta(:,1) = -S; % zero order
[7] eta(:,2) = -(8+0.5%ka)./(1+kax*S); % first order
[8] eta(:,3) = -S - 0.5%ka*x(1-2*%S."2) + 0.5%xka"2*(S-3*%S.73); Y’ second order
[9] ez = exp(kaxeta);
[10]
[11] K = [0, -0.5%ka, -0.5%ka]; %[zero order, first order, second order]
[12] rat = [1, 1, 1/(1-ka"2)];
[13] LHS_D = rat.*ez.*(S + 0.5xkaxez)+eta;
[14] 1LHS_K = -K + ez.*S + eta;
[15]
[16] figure(3)
[17] plot(xi/ (2%pi),100xLHS_D)
[18] texText (sprintf (’Dynamic BC error: $ka = %0.2f$’,ka),’t’)
[19] texText (’$\xi/2\pi$’, x’)
[20] texText (’error [\%1’,’y’)
[21] legend({’ (ka)~0’,’(ka)~1’,’(ka)"2’}, ’location’, ’southeast’, ’box’,’off’)
[22] graphToPDF (sprintf (’errorD%0.2f .pdf’ ,ka) ,4.25,3)
[23]
[24] figure(4)
[25] plot(xi/(2*pi),100*LHS_K)
[26] texText (sprintf (’Kinematic BC error: $ka = 7%0.2f$’,ka),’t’)
[27] texText (’$\xi/2\pi$’, ’x’)
[28] texText (error [\%]’,’y’)
[29] legend({’ (ka)~0’,’(ka)"1’,’(ka)"2’},’location’,’southeast’, ’box’,’off’)
[30] graphToPDF (sprintf (’errorK%0.2f .pdf’ ,ka),4.25,3)
[31] end
(a)
15 Dynamic BC error: ka = 0.20
10
5 L 4
XX
§ 0
g
5t 7
(ka)°
-10 | (ka)' A
(ka)®
-15 . . . .
0 0.2 0.4 0.6 0.8 1
/2
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Kinematic BC error: ka = 0.20

5
/\
O - B \/_’
5 4
X
g -10 g
—
)
-15 + i
(ka)
-20 + (ka)t -
(ka)?
-25 : : : :
0 0.2 0.4 0.6 0.8 1

£/2m

(b) The problem is when sin{ — 0 because in this case the denominator becomes zero. The
limit of the ratio is still finite since the numerator is also zero, but this may become unreliable
since the numerator is the difference of two finite things that get closer and closer as sin§ — 0.
Eventually the round-off error of the calculation will kill the accuracy of the difference, making
the results unreliable.
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6.1 In general to compute the gravitational potential energy of a distributed object we take
the volume integral over the extent of the object

U:/dmgz:/pdng:pg/de

where z is the vertical coordinate of the volume element dV. Thus if we take the wave to be
described by n(x) = —asin(kx) then the negative part is the first half wavelength of x. Let
us consider the section that is colored dark blue before, and extending a distance w in the y
direction (into the paper), the volume element will be dV = dx dy yz and the initial potential

energy will be
w L/2 0
Uing/ dy/ da:/ dz z

L/2
/ dl// 2"
L2
:—%/ dy/ dx n?(x)
2 Jo 0

L/2
= f@w/ dx n°(x)
2 Jo

while the final potential energy will be

L
=2y / dx n?(z)

L/2
The potential energy of the light blue part does not change so the total change in potential
energy of the water is

L L/2
U=Uy-U; = %w/ dz nz(x)f(fp—gw)/ dx n*(x)
0

L L/2

= @w/ dx n*(x) + @w/ dx n*(x)

2 Jrpe 2 Jo

L

= p—ng dx n*(x)

0
Thus the potential energy per surface area is
U ,Og 1 / 2
U=—=— dx

1= 2 L @ i ( <77 )

The actual shape of 1 does not matter really as long the volume of the before and after sections
are the same and this is assured since z = 0 is defined to be the location of the mean sea level.

For the particular case of n = —asin(z) we know that (n) = (a*sin®*(z)) = 2a?, and so
2
y_ Pga
4
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6.2
(a) We start with the result that

(P)y=E w/dA k=

So that the power through a strip w wide and going from the surface to a depth £. Then we can
write

(P):=E w/dA ek

w 0
=E w/ dy/ dz e?k*
0 .,

erz 0
=Eww
-2

2k
1— 672]6@
=E
wUToR

and so

<P>t _F wl — e 2Kt

wl 2kl

(b) Since E = p92“2 we see that the power increases as the square of the amplitude. Setting a to

2
one meter we find E = 24 = 4.9%

(c)
70 T T . :
T=5s
T=10s
60T T=15s |
T =20s
50 ]
£
40 t 1
Z
3
=30+ -
&
20 =
10 :
O 1 1 1 1
0 20 40 60 80 100
¢ [m]
(d)

58



Wind Waves Notes Solutions - 59

T=5s
T=10s

O L L L L
0 20 40 60 80 100

¢ [m]

(e) From the graph of power per area we see that the power per area decreases with ¢ thus it is
better to have a wide and shallow panel.
(f) With a £ small we can use the expansion e 2k ~ 1 — 2k¢ and thus

@ . wl _ e*%f
wl 2kl
g Lo (2K
T YT ok
2w W
w=E > 385

where we have used the lowest energy period of 20 seconds, and we have reduced the value of
EtoE = 0.52(4.9%) since our amplitude a is half a meter instead of one meter. Thus with an
area of 1 square meter and a minimum power generate of 80 watts we have
o= _ 21
385W

a five percent efficiency.

(g) The maximum incident power of 1000 watts leads to a maximum average power to
watts. With an efficiency of 37% this will generate a power of 118 watts. This is a bit better

than the 80 watts produced by our 21 % efficient wave energy sucker.

1000
by
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6.3

60



Wind Waves Notes Solutions - 61

6.4 In this case we have
. 2
/a(/@)e”‘gdm = / 1e™¢dk = sinc(£/2)
—1/2

and so ~
n = cos(kx — wt)sinc(£/2)

61



Wind Waves Notes

6.5 We first compute

) = / a(k)e'Fr=1) d

3
0o
z(kx—wt)/ a(ﬁ)eimf ok dk
—o0
(o — i <1 1,2
:ei(kmfwt)/ e 2" ezn{ dk
oo V2T

ST - < 1 1,2,
_ i(kz—wt) — 2k +iké
=e —€ 2 dk
/,OO V2

T~ * 1 1(,2 o
_ ez(kx—wt)/ e—g(n —2iKE) dk
oo V2T
T R | 1.2 o N2V 12
_ z(kmfwt)/ —5 (k" =2ir€+(i)") , 5 (i6) d
(& —€ (& K
oo V2T

:ei(kx—wt)e%(igf/ L ie-io? g,

k—k

Solutions - 62

with £ = =% and § = oy (z — vgt). Thus n = cos(kx — cI)t)(f%52 and we see that the envelope
is a gaussian in &!

(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8l
(9]
[10]
[11]
[12]
[13]

function gauss(sigma_k,kbar)
lam = 2%pi/kbar;

dx = lam/20;
sigma_x = 1/sigma_k;
x = -b*sigma_x:dx:5*sigma_x;

xi = sigma_kx*x;

env = exp(-0.5*xi."2);

eta = cos(kbar*x).*env; % wave at t=0
plot(xi,env,’r’,xi,-env,’g’,xi,eta)
texText (P$\xi$’, ’x7)

xticks(-5:5)

graphToPDF (’gauss.pdf’,4.25,2)

end
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6.7 The following code makes the graphs.
[1] function [hist_H,hist_x] = buoyHist(day)

[2] switch day

[3] case ’march2’

[4] fn = ’../../waveData/xy029p101_201903020000-201903032359’; %Day o
visit

[5] case ’marchl’

[6] fn = ’../../waveData/xy029p101_201903010000-201903022359’; YDay b
fore

[7] otherwise

[8] disp(’hey dumby that is not an option. I dont know how to spell b
you dont know how to type.’);

9] return;

[10] end

[11] [r,stepError] = readBuoyFile(fn);

[12] fs = 1.28;

[13] N30 = 30*60*fs;

[14] Ns = size(r,1);

[15] Ng = floor(Ns/N30);

(el % Ng = 5;

[17] zg = reshape (r(1:NgxN30,3)/100,N30,Ng) ;

[18] error = sum(reshape(stepError (1:Ng*N30),N30,Ng));

[19] hist_H = NaN(14,Ng);

[20] Hm = NaN(Ng,4);

[21] hist_T = NaN(12,Ng);

[22] Tm = NaN(Ng,4) ;

[23]

[24] for ng = 1:Ng

[25] if error(ng)==

[26] [hist_H(:,ng) ,hist_Hx,hist_T(:,ng),hist_Tx,Hm(ng,:),Tm(ng,:)] = ¢

[27] end

[28] end

[29] figure(1)

[30] imagesc([1,Ng] ,hist_Hx,hist_H)

[31] hold on

[32] plot(1:Ng,Hm, ’r’)

[33] hold off

[34] texText (’group’,’x’)

[35] texText (C$H$ [m]’,’y?)

[36] graphToPDF (*hist_height_all.pdf’,4,4)

[37]

[38] figure(10)

[39] imagesc([1,Ng] ,hist_Tx,hist_T)

[40] hold on

[41] plot(1:Ng,Tm,’r’)

[42] hold off

[43] texText (’group’,’x’)

[44] texText C$T$ [s]1°’,’y’)

[45] graphToPDF (*hist_period_all.pdf’,4,4)

[46] end

[47]

[48]

[49] function [hist_H,hist_Hx,hist_T,hist_Tx,Hm,Tm] = comp(z,ng)
[50] fs = 1.28;
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[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[671]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[871]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[971
[98]
[99]
[100]
[101]
[102]
[103]
[104]

dt = 1/fs;

Ns = size(z,1);
NcUB = round(Ns/5);
ind = NaN(1,NcUB);
tc = NaN(1,NcUB);

Nc = 0;
for n=1:Ns-1
if z(m)>=0 && z(n+1)<0
Nc = Nc+1;
ind(Nc) = n;
tc(Nc) = (nt+z(n)/(z(n)-z(n+1)))*dt;
end
end
ind = ind(1:Nc);
tc = tc(1:Nc);

T = NaN(1,Nc-1);
H = NaN(1,Nc-1);

for n = 1:Nc-1

rng = (ind(n)+1) :ind(n+1);

T(n) = tc(n+1l)-tc(n);

z_section = z(rng);

H(n) = max(z_section) - min(z_section);
end

ind = find(isfinite(H));

H = H(ind); Yremove the NaN elements of H and T
T = T(ind);

[,ind] = sort(H, ’descend’);

H = H(ind); % now put in descending order

T = T(ind);

Nf = length(H);
N_third = round(Nf/3);
N_tenth = round(Nf/10);

H_mean = mean(H);

H_rms sqrt(mean(H."2));
H_third = mean(H(1:N_third));
H_tenth = mean(H(1:N_tenth));

T_mean = mean(T);

T_rms = sqrt(mean(T."2));
T_third = mean(T(1:N_third));
T_tenth = mean(T(1:N_tenth));

figure(2)
subplot(2,1,1)
dH = 0.3;

h = histogram(H,dH/2:dH:4.5, displaystyle’, ’stairs’);

hold on
A=1;

Solutions - 64
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[105] plot(H_mean =*[1,1],[0,A],’k’);

[106] plot(H_rms  *[1,1],[0,A],’k’);

[107] plot(H_third *[1,1],[0,A],’k’);

[108] plot(H_tenth *[1,1],[0,A],’k’);

[109] hold off

[110] text (H_mean ,A,sprintf( ’$\\bar H=Y0.2f$m’,H_mean ),’rotation’,90,’in
[111] text(H_rms ,A,sprintf(’$H_{rms }=J0.2f$m’ ,H_rms ),’rotation’,90,’in
[112] text (H_third,A,sprintf (°$H_{1/3 }=%0.2f$m’ ,H_third),’rotation’,90,’in
[113] text (H_tenth,A,sprintf ($H_{1/10}=%0.2f%m’ ,H_tenth),’rotation’,90,’in
[114] xticks(0:1:5)

[115] texText C$H$ [m]’,’x’)

[116] hist_H = h.Values;

[117] hist_Hx = h.BinEdges;

[118] Hm = [H_mean,H_rms,H_third,H_tenth];

[119]

[120] subplot(2,1,2)

[121] dT = 2;

[122] h = histogram(T,dT/2:dT:25, ’displaystyle’,’stairs’);

[123] hold on

[124] A=1;

[125] plot(T_mean *[1,1],[0,A]);

[126] plot(T_rms  *[1,1],[0,A]);

[127] plot(T_third *[1,1],[0,A]);

[128] plot(T_tenth *[1,1],[0,A]);

[129] hold off

[130] text(T_mean ,A,sprintf( ’$\\bar T=),0.2f$m’,T_mean ),’rotation’,90,’in
[131] text(T_rms ,A,sprintf(’°$T_{rms }=0.2f$m’,T_rms ),’rotation’,90,’in
[132] text (T_third,A,sprintf (°$T_{1/3 }=),0.2f$m’,T_third),’rotation’,90,’in
[133] text (T_tenth,A,sprintf (°$T_{1/10}=%0.2f$m’ ,T_tenth), ’rotation’,90,’in
[134] xticks(0:2:20)

[135] hist_T = h.Values;

[136] hist_Tx = h.BinEdges;

[137] Tm = [T_mean,T_rms,T_third,T_tenth];

[138]

[139] graphToPDF (sprintf (’histHT)d.pdf’ ,ng) ,4.5,4.5)

[140] end

[141]
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6.8 The following code will make the graphs.
[1] function [sum_Edf,dist_E] = buoyDist(day)

[2] switch day

[3] case ’march?2’

[4] fn = ’../../waveData/xy029p101_201903020000-201903032359°; %Day o
visit

[5] case ’marchl’

[6] fn = ’../../waveData/xy029p101_201903010000-201903022359’; %Day b
fore

[7] otherwise

[8] disp(’hey dumby that is not an option. I dont know how to spell b
you dont know how to type.’);

[9] return;

[10] end

[11] [r,stepError] = readBuoyFile(fn);

[12] fs = 1.28;

[13] N30 = 30*60%*fs;

[14] Ns = size(r,1); % number of smaples.

[15] Ng = floor(Ns/N30); % number of 30 minute groups of samples.

[16] Nfft = 128; % the rest assumes N30/Nfft is an integer.

[17] Ne = N30/Nfft; % number of FFT’s in a 30 minute ensamble.

[18] eta = reshape(r(1:NgxN30,3)/100,Nfft,Ne,Ng) ;

[19] eta = eta - mean(eta,l);

[20] error = sum(reshape(stepError(1:Ng*N30),N30,Ng));

[21]

[22] mean_eta2 = squeeze(mean(mean(eta."2)));

[23]

[24] dist_E = NaN(Nfft/2,Ng);

[25]

[26] df = fs/Nfft;

[27] for ng = 1:Ng

[28] if error(ng)==

[29] H = fft(squeeze(eta(:,:,ng)));

[30] dist_E(:,ng) = (2/(Nfft*fs))*mean(abs(H((1:Nfft/2)+1,:))."2,2);

[31] end

[32] end

[33] sum_Edf = sum(dist_E)*df;

[34]

[35] figure(1)

[36] surf (10*¥1log10(dist_E))

[37]

[38] figure(3)

[39] ng = 1:Ng;

[40] plot(ng,sum_Edf, ’o’,ng, mean_eta2)

[41] legend({’$\sum E\Delta £$’,’$\langle\eta"2\rangle$’},’interpreter’,’latex

[42] graphToPDF (’varDensity.pdf’,4,2)

[43] end
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6.9 Using the given p(a,)

Thus

50 (an)e = /S0n.

Solutions - 70
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6.10 Using the given p(e,,).
En = E(fn) = [EnJ

= / En p(gn)dsn
0

o0
A
:/ 5n—2fe*Af S"/Uidsn
0

Un
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Solutions - 71
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6.11 This code creates the graph

(1]

[2]

(3]

[4]

(5]

(el

[7]

(8l

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

function buoyDistFine()

end

fn = °../../waveData/xy029p101_201903020000-201903032359" ;
[r,stepError] = readBuoyFile(fn);

fs = 1.28;

N30 = 60*30%*fs;

Ns = size(r,1); % number of samples.

Ng = floor(Ns/N30); % number of 30 minute groups of samples.
Nfft = 128; % the rest assumes N30/Nfft is an integer.
Ne = N30/Nfft; % number of FFT’s in a 30 minute ensemble.

eta = reshape(r(1:Ng*N30,3)/100,Nfft,Ne,Ng);

eta = eta - mean(eta,1); % remove mean from each column.
error = sum(reshape (stepError (1:Ng*N30),N30,Ng));

dist_E = NaN(Ne,Ng);

Solutions - 72

n_p = 8; % The index of the peak amplitude in the fft, f_8 = 0.07 Hz;

for ng = 1:Ng
if error(ng)==0
H = fft(squeeze(eta(:,:,ng)));
H_peak = H(n_p,:);
dist_E(:,ng) = (2/(Nfftx*fs))x*abs(H_peak)."2;

end
end
mu = mean(dist_E);
u = reshape(dist_E./mu,1,[]);

u_bin_edges = 0:0.25:9;
histogram(u,u_bin_edges, ’Normalization’,’pdf’)
hold on

x = 0:0.1:10;

plot(x,exp(-x));

texText (P $u$ [-1°,°x)

texText (’probability density’,’y’)

hold off

graphToPDF (’distFine.pdf’,4,3)
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6.14 The following code produces the graph and computes the statistics. The graph was
produced with @ =1, N = 18 and M = 100000.
function statsOfmean(N,M,a)

(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8l
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

end

x = -axlog(rand(N,M));
mu = mean(x,1);
figure(1)
histogram(mu, ’normalization’,’pdf’);
mean_mu = mean(mu) ;
std_mu std(mu) ;
mean_theory = a;
std_theory = a/sqrt(N);
str = sprintf (’\\mu=%0.3f, \\mu_{theory}=%0.3f, \\sigma=%0.3f, \\sigma_{t
title(str)
xlabel(’x’)
ylabel(’probability density’)
if N==18
graphToPDF (sprintf (’ statsOfmeanjd.pdf’ ,N),4,3)
end

5;:1.001, ”theoryzl'ooo’ 0=0.235, atheory=0.236

=
o

probability density
H

0.5 1 15 2

X

The mean and standard deviations are printed on the graph, and we see that they are the same
for the theory and numerical methods.
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7.1 The following code is a method of doing the analysis, and it produces the following graphs,
in addition two other graphs.

[1]

[2]

[3]

[4]

(5]

(6]

[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

function buoyStats()

fname = ’../../waveData/xy029p101_201903020000-201903032359" ;
[r,stepError] = readBuoyFile(fname);

fs = 1.28;

N30 = 60*x30*xfs; % number of samples in 30 minutes

Ns = size(r,1); % number of samples.

Ng = floor(Ns/N30); % number of 30 minute groups of samples.
Nfft = 128; % the rest assumes N30/Nfft is an integer.
Ne = N30/Nfft; % number of FFT’s in a 30 minute ensemble.

eta = reshape(r(1:Ng*N30,3)/100,Nfft,Ne,Ng);

error = sum(reshape(stepError (1:Ng*N30),N30,Ng));

eta = eta(:,:,error==0); % keep just the error free groups.

Ng = size(eta,3);

eta = eta - mean(eta,1); % remove mean from each column.

En = NaN(Nfft/2,Ng) ;

df = fs/Nfft;

for ng = 1:Ng % compute spectral density and m0 and m2.
H = fft(squeeze(eta(:,:,ng)),1); % compute FFT of all sections in group
H = H(1:Nfft/2,:); % cut off the redundant half of the spectrum
epsilon = (2/(Nfft*xfs))*abs(H)."2;
En(:,ng) = mean(epsilon,2);

end

fn (0: (Nfft/2-1)) ’*df;

m0 = sum( En,1)*df;

m2 = sum(fn.”2.*En,1)*df;

eta = reshape(eta,Nfft*Ne,Ng); % regroup by half hour rather than Nfft

% Compute the mean period for each value of eta threshold
eta_lim = 0:0.01:1.6;
meanT = NaN(length(eta_lim),Ng);
for ng = 1:Ng
if error(ng)==
meanT(:,ng) = meanPeriod(eta(:,ng),eta_lim,fs);
end
end
upsilon = m0.*log(meanT. 2.*(m2./m0));

figure(1) 7% graph the pdf of eta
histogram(eta./sqrt(m0), ’normalization’,’pdf’,’displaystyle’,’stairs’)
hold on
u=-4:0.01:4;
plot(u,sqrt(1/(2*pi))*exp(-0.5%u.~2))
hold off
texText (’$u = \eta/\sqrt{m_0}$’,’x’)
texText (’probability density’,’y’)
legend({’P.D.’, $\sqrt{1\over 2\pite~"{-u~2/2}$’}, interpreter’,’latex’)
graphToPDF (’etaPDF.pdf’,4,3)

figure(2) % plot Upsilon verus eta
plot(eta_lim,upsilon)
hold on
plot(eta_lim,eta_lim."2,’g:’,’linewidth’,2)
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[53] hold off

[54] texText (’$\eta$’, ’x?)

[55] texText (’$\Upsilon$’,’y’)

[56] x1im([0,1.6])

[67] ylim([0,2.61)

[58] graphToPDF (’LHSvsEta.pdf’,4,3)

[59]

[60] figure(3) % a 2-D histogram of (eta,upsilon)

[61] eta_m = eta_lim’*ones(1,size(upsilon,2));

[62] eta_m = reshape(eta_m, [],1);

[63] upsilon = reshape(upsilon ,[1,1);

[64] xEdges = eta_lim-0.001;

[65] yEdges = 0:0.01:2.5;

[e6] histogram2(eta_m,upsilon,xEdges,yEdges, ’displaystyle’,’tile’)
[67] hold on

[68] plot(eta_lim,eta_lim."2,’r:’,’linewidth’,1)
[69] hold off

[70] texText (’$\eta$’, ’x?)

[71] texText (’$\Upsilon$’,’y’)

[72] texText (’Histogram’,’t’)

[73] graphToPDF (’LHS-PDF .pdf’ ,4,4);

[74]

[75] figure(4) % a 2-D histogram of (eta,sqrt(upsilon))
[76] yEdges = 0:0.005:1.6;

[77] histogram2(eta_m,sqrt(upsilon),xEdges,yEdges,’displaystyle’,’tile’)
[78] hold on

[79] plot(eta_lim,eta_lim,’:’,’linewidth’,2)

[80] hold off

[81] texText (’$\eta$’, ’x7?)

[82] texText (’$\sqrt{\Upsilon}$’,’y’)

[83] texText (’Histogram’,’t’)

[84]

[85] figure(5) % a surface plot of upsilon verus eta over time
[86] surf (upsilon)

[87]

[88] end

[89]

[90] function T = meanPeriod(eta,eta_lim,fs)
[91] % computes the mean period of eta for each threshold value in the
[92] % vector eta_lim

[93] N = length(eta_lim);

[94] T = NaN(1,N);

[95] for n = 1:N

[96] ind = find(diff (eta>eta_lim(n))==(-1)); % find level crossings
[97] NT = length(ind)-1; % the number of periods found

[98] if NT>6 % if there is enough periods for trusty mean

[99] T(n) = (1/fs)*(ind(end)-ind(1))/NT;

[100] end

[101] end

[102]  end
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In the above graph we see the probability density of u = n/,/mg and the gaussian %e‘“z/ 2,

We can see that the probability density follows closely the gaussian.

2.5

15

In the above graph we see T versus 7. There is one graph for each half hour of data. The green
dotted line is y = 7? for reference. We see that while there is some systematic difference from
the theoretical relationship T = n? that the trend is very close to the theoretical.
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Histogram

2.5

0 0.5 1 15

The above graph is a histogram of the same data as in the previous graph. Because there were
so many graphs on top of each other it was hard to see the density of lines in the previous graph.
This graph shows in some sense the density of lines, so it is easier to see the general trend. The
theoretical curve is the red dotted line. The deviation from this curve is greatest near n = 0,
but again the overall trend is very close to the theoretical.
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7.2 The following code produces the desired graph.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

function buoySWH()

fname = ’../../waveData/xy029p101_201903020000-201903032359 ;
[r,stepError] = readBuoyFile(fname); % read data file

fs =1.28; % the sample rate

N30 = 60*x30*fs; % number of samples in 30 minutes

Ns = size(r,1); % number of samples.

Ng = floor(Ns/N30); % number of 30 minute groups of samples.
eta = r(1:Ng*N30,3); % Truncate data to full group.

eta = eta/100; % Convert data from cm to meters.
eta = reshape(eta,N30,Ng); % Group data.

error = stepError(1:Ng*N30); % Truncate error data to full group.
error = sum(reshape(error,N30,Ng)); % Group error.

eta = eta(:,error==0); % Keep just the error free groups.
eta = eta - mean(eta,l); % remove mean from each group.

m0 = mean(eta.”2,1); % Compute the mean squared amplitude.
H_mO = 4xsqrt(mO); % Compute H_mO.

Ng = length(mO0); % Get number of groups.

H_third = NaN(1,Ng); % Allocate an array to store H_1/3.
for ng = 1:Ng % Loop over groups.

H_third(ng) = comp_H_third(eta(:,ng)); % Compute H_1/3.
end

Solutions - 81

slope = sum(H_mO.*H_third)/sum(H_m0."2); % Compute least squares slope.
figure(1) % Graph H_1/3 versus H_mO.
x = [0,3]; % Set range of H_mO to graph.

plot(H_mO,H_third,’o’,x,x,’r’,x,slope*x,’g’)
texText (’$H_{m_0}$ [m]’,’x’)
texText C$H_{1/3}$ [m]’,’y’)
str = sprintf (°$%0.3f"H_{m_0}$’,slope);
legend ({’$H_{1/3}$’,’$H_{m_0}$’,str}, ’interpreter’,’latex’)
legend(’location’, ’northwest’)
graphToPDF (’swh.pdf’,4,4)
end

function H_third = comp_H_third(eta)
ind_cross = find(diff(eta>0)==(-1));% Find downward crossing points.

N = length(ind_cross)-1; % The number of waves.
H = NaN(1,N); % Allocate memory for wave heights.
for n = 1:N

rng = (ind_cross(n)+1):ind_cross(n+1l); % One wave section of data.

H(n) = max(eta(rng)) - min(eta(rng)); 7% Compute wave height.
end
[7,ind] = sort(H, ’descend’);

H = H(ind); % Put in descending order.

H_third = mean(H(1:round(N/3))); % Compute H_1/3.
end
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Solutions - 82

We see that the H,,, overestimates Hj,3 by about ten percent which is in line with figure 4.11

from the textbook.
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Solutions - 84

0 7ﬁdu

This maximum occurs where the slope is zero and this happens with f = fpy so we see that

the peak frequency is f, = fpm. Now we can write
Sy 5 (feM)t
Jom i(PfM)ileranﬁe

Bew df =5[] f? Jpm

—e 1l

so we see that
E(u) = MQJ us
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7.5 The following code produces a graph of the data and the least squares fit of the Pierson-
Moskowitz model to the data.

[1] function buoyCheckPM(day,nKeep)

[2] % Check to see how well the Pierson-Moskowitz spectrum fits the data.
[3] march2 = ’../../waveData/xy029p101_201903020000-201903032359" ;

[4] march6 = ’../../waveData/xy029p101_201903060000-201903062359° ;

[6] march7 = ’../../waveData/xy029p101_201903070000-201903072359" ;

[6] march8 = ’../../waveData/xy029p101_201903080000-201903082359 ;

[7] switch day

[8] case ’march2’

[9] fname = march?2;

[10] case ’march6’

[11] fname = march6;

[12] case ’march7’

[13] fname = march7;

[14] case ’march8’

[15] fname = march8;

[16] end

[17] [r,stepError] = readBuoyFile(fname);

[18] fs = 1.28;

[19] N30 = 60*30*fs; % number of samples in 30 minutes

[20] Ns = size(r,1); % number of samples.

[21] Ng = floor(Ns/N30); % number of 30 minute groups of samples.

[22] Nfft = 128; % the rest assumes N30/Nfft is an integer.

[23] ©Ne = N30/Nfft; % number of FFT’s in a 30 minute ensemble.

[24] eta = reshape (r(1:NgxN30,3) /100, Nfft, Ne , Ng);

[25] error = sum(reshape(stepError(1:Ng*N30) , N30, Ng));

[26] Yeta = eta(:,:,error==0); % Keep just the error free groups.
[27] UNg = size(eta,3);

[28] eta = eta - mean(eta,l); % Remove mean from each column.
[29] En = NaN(Nfft/2,Ng); % Set up array for spectral density.
[30] df = fs/Nfft; % Compute the frequency spacing.
[31] for ng = 1:Ng % Compute spectral density.

[32] if “error(ng)

[33] H = fft(squeeze(eta(:,:,ng))); % Compute FFT of sections in group.
[34] H = H(1:Nfft/2,:); % Cut off the redundant half.
[35] epsilon = (2/(Nfftx*fs))*abs(H)."2;

[36] En(:,ng) = mean(epsilon,2); % Density is the mean of epsilon.
[37] end

[38] end

[39] En = En(2:end,:);

[40] fn = (1:(Nfft/2-1))’*df;

[41] mO0 = sum( En,1)*df;

[42] Ym2 = sum(fn. 2.*En,1)*df;

[43] 1logE = log(En./m0);

[44] figure(1)

[45] surf(logE)

[(46] zlim([-6,6])

[47]

[48] if nargin ==

[49] nKeep = 1:size(En,2);

[60] end

[61] E = mean(En(:,nKeep),2,’omitnan’);

[62] mm0 = mean(mO(nKeep),’omitnan’);
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[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[661]
(671
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]

[7,ind] = max(E);
fp_0 = fn(ind);
fp_fit = fit_Epm(fn,E,mm0,fp_0);

Epm_fit = PM_spec(fn,fp_fit,mm0);

figure(2)
plot(fn,E,fn,Epm_fit);

Solutions - 86

legend ({’$E(£)$°,’$E_{\rm PM}(£)$’},’ interpreter’,’latex’)

texText (P $£$°, %)

texText (sprintf (°%s: group %d to %d’,day,min(nKeep) ,max(nKeep)),’t’)
graphToPDF (sprintf (’PM-fit-Ys.pdf’,day),4,3);

end
function Epm = PM_spec(f,fp,m0)
u = fp./f;
Epm =
end

function fp_fit =

fit_Epm(f,E,m0,fp_0)

(5*%m0/fp)*u. 5. *exp(-1.25%u.~4);

% This function finds the Pierson-Moskowitz spectrum that minimizes the
% mean squared error between the observed data (f,E) and the model. This is
% accompished by finding that parameter fp that minimizes the error.

fp_fit =
function mse = compMSE(fp)
E_fit = PM_spec(f,fp,m0);
mse = sum((E-E_fit)."2);
end
end

fminsearch(@compMSE,fp_0);

march2: group 55 to 67
5 T T T T T T
E(f)
EPM(f)
4t ]
3 L m
2 L m
1 L m
O L 1 L L !
0 0.1 0.2 0.3 0.4 0.5 0.6
f
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march7: group 1 to 32

E(f)
Epn(f) | |

0.1

0.2 0.3 0.4 0.5

0.6

Solutions - 87
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7.6 The following code makes the graph. The model only seems to fit the data very well for
March 6.

[1] function buoyCheckJS(day,nKeep)

[2] % Check to see how well the Pierson-Moskowitz spectrum fits the data.

[3] march2 = ’../../waveData/xy029p101_201903020000-201903032359" ;
[4] march6 = ’../../waveData/xy029p101_201903060000-201903062359° ;
[6] march7 = ’../../waveData/xy029p101_201903070000-201903072359" ;
[6] march8 = ’../../waveData/xy029p101_201903080000-201903082359 ;
[7] switch day

[8] case ’march2’

[9] fname = march?2;

[10] case ’march6’

[11] fname = marché6;

[12] case ’march?7’

[13] fname = march7;

[14] case ’march8’

[15] fname = march8;

[16] end

[17] [r,stepError] = readBuoyFile(fname);
[18] fs = 1.28;

[19] N30 = 60*30*fs; % number of samples in 30 minutes

[20] Ns = size(r,1); % number of samples.

[21] Ng = floor(Ns/N30); % number of 30 minute groups of samples.

[22] Nfft = 128; % the rest assumes N30/Nfft is an integer.

[23] ©Ne = N30/Nfft; % number of FFT’s in a 30 minute ensemble.

[24] eta = reshape (r(1:NgxN30,3) /100, Nfft, Ne , Ng);

[25] error = sum(reshape(stepError(1:Ng*N30) , N30, Ng));

[26] Yeta = eta(:,:,error==0); % Keep just the error free groups.
[27] UNg = size(eta,3);

[28] eta = eta - mean(eta,l); % Remove mean from each column.

[29] En = NaN(Nfft/2,Ng); % Set up array for spectral density.
[30] df = fs/Nfft; % Compute the frequency spacing.

[31] for ng = 1:Ng % Compute spectral density.

[32] if “error(ng)

[33] H = fft(squeeze(eta(:,:,ng))); % Compute FFT of sections in group.
[34] H = H(1:Nfft/2,:); % Cut off the redundant half.
[35] epsilon = (2/(Nfftx*fs))*abs(H)."2;

[36] En(:,ng) = mean(epsilon,2); % Density is the mean of epsilon.
[37] end

[38] end

[39] En = En(2:end,:);

[40] fn = (1:(Nfft/2-1))’*df;
[41] mO0 = sum( En,1)*df;
[42] Ym2 = sum(fn. 2.*En,1)*df;
[43] 1logE = log(En./m0);

[44] figure(1)

[45] surf(logE)

[46] =zlim([-6,6])

[47]

[48] if nargin ==

[49] nKeep = 1:size(En,2);

[50] end

[61] E = mean(En(:,nKeep),2,’omitnan’);
[62] mmO0 = mean(mO( nKeep) ,’omitnan’);
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[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[661]
(671
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]

[1]
[2]
(3]
[4]
[5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[7,ind] = max(E);

% initial guesses

fp_0 = fn(ind);

alpha = 5+mmO%*(2%pi*fp_0)~4/9.8"2 ;

sigma_a = 0.07;

sigma_b = 0.09;

gamma = 3.3;

par_0 = [alpha,fp_0,sigma_a,sigma_b,gamma];
[par_fit,E_fit,f_fit] = fit_JONSWAP({fn,E,par_0);

figure(2)

plot(fn,E,f_fit,E_fit);

legend ({’$E(£)$’,’$E_{\rm JS}(£)$’},’ interpreter’,’latex’)

texText (?$£$°,°x7)

texText (sprintf (’%s: group %d to %d’,day,min(nKeep) ,max(nKeep)),’t’)
parName = {’\alpha’,’f_p’,’\sigma_a’,’\sigma_b’,’\gamma’};

str = 7°
for n = 1:5

sprintf (°%s$%s=%0.3f$\n’,str,parName{n},par_fit(n));

o= -

str
end
texText (str,’g’,0.7*max(fn),0.5*max (E))
graphToPDF (sprintf (’JS-fit-%s.pdf’,day),4,3);

end

function [par_fit,fit_func,f_fine] = fit_JONSWAP(f,E,par_0)
% This function finds the Pierson-Moskowitz spectrum that minimizes the
% mean squared error between the observed data (f,E) and the model. This is
% accompished by finding that parameter fp that minimizes the erro.
par_fit = fminsearch(@compSSE,par_0);
df = £(2)-f(1);
f_fine = min(f):df/10:max(f);
fit_func = JS_spec(f_fine,par_fit);
function mse = compSSE(par)

% if sum(par>0)==
% E_fit = JS_spec(f,par);
% mse = sum((E-E_fit)."2);
A else
% mse = Inf;
% end

E_fit = JS_spec(f,par);

mse = sum((E-E_fit)." 2);

% if sum(par>0)<5 || par(3)<0.03
% mse = 1.1*mse;
% end
end
end

function E_J = JS_spec(f,par) % JONSWAP spectral density
alpha = par(l);

89



Wind Waves Notes

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

end

fp

sigma_
sigma_

par(2);

a = par(3);

b

.8;

= f>fp;
“top;
= sigma_axbot + sigma_b*top;

f/fp;

= alphax(g/(2%pi) ~2) "2*f . -5.%exp(-1.25%u."-4);

par(4);
par(5);

% one where f> fp zero otherwise;
% one where f<=fp zero otherwise;

gamma. ~ (exp(-0.5*((u-1)./sigma)."2));

= PM.x*G;

25

20

15

10

march2: group 60 to 67

E(f)
Ejs(f)
a = 0.003 1
£, = 0.092
o, = 0.145
op = 0.133 ]
v =0.293
0.1 0.2 0.3 0.4 0.5 0.6
f
march6: group 1 to 30
E(f)
Ejs(f)
a = 0.008 .
£, =0.110
o, = 0.090
oy = 0.123 ]
N = 2.370
0.1 0.2 0.3 0.4 0.5 0.6
f

Solutions - 90
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march7: group 1 to 32

7 T : .
E(f)
6r Ejs(f) |1
5 L 4
.l a=0004
f, = 0.107
5l 74 = —0.011
oy = 0.263
)1 y = 1.382
1 L 4
O 1 1 —
0 0.1 0.2 0.3 0.4 0.5 0.6

91



Wind Waves Notes Solutions - 92

7.7 o
ki:k+'k+
_E1+E2'E1+E2
2 2
1'E1+Ez'52+2E1'E2]

N S SN N

—
1

kT + k3 + 2k1ks cos ]

[
— ¢’k = — [¢°k} + g7k3 + 2gk1gks cos 0]
[

wi + wiy + 2w2w?2 cos 0]

So wi = gk, if wi = g?k3 or

0 ZQQki —wi

4
w1 + wa

— 0=16¢%K2 — (w1 + ws)*

1
— 0= 161 [wi + w3 + 2wiw] cos 0] — (wy + wo)?
— 0=4[w] +wj + 2wiw; cos ] — (w; + wy)*
0
— 7:4[x4+1+2x2c050]—(:v+1)4
w2
— 0:4[$4+1—|—2x2cos9]—(x+1)4

with x = 5—; If we make a contour graph of the two dimensional function 4 [CE4 + 1+ 222 cos 9] —

(z+ 1)4, we see that there is two zeros to the function for each value of 6.

st | L

M)
5 TR

S
25+ ~
o
2 L 4
® 15} ]
A0
N S
Q
1t NS N
o
(@}
|\I
05+ / 1
O 1 1 1
5 3 3

o
0 0.5 1 15 2 2. 5
x

It appears that for a given 6 the two solutions are inverses of each other. This appears to be
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true algebraically: suppose that = is such that 0 = 4 [954 + 1+ 222 cos 9] —(z+ 1)47 then if we
divide by z* we have 0 =4 [1+ % + 2% cosf] — (1 + %)4, now let y = 1/z, and substitute to
get 0= 4[1+y* +2y?cosf] — (1 +y)* which is the same equation as before, so we see that

y = 1/x is a solution if x is. So when we look for a solution we can just look for the one that is
less than 1.

251

051 _

O L L L L
0 0.2 0.4 0.6 0.8 1

X

Unexpectedly the zero contour is fit well by a fourth order polynomial in 6.

c 0.00786* — 0.07900% + 0.3350% — 0.7296 + 1.001

zero contour
3r EEE fit .
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7.8
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