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1 Introduction: Kinsman Ch1

§ 1.1 Introduction

. Problem 1.1

Define the following words.
(a) Fetch
(b) Dispersive medium.

. Problem 1.2

What is the most common height of waves on the ocean?

. Problem 1.3

On page page 15 are two equations one relating the wavelength L and
period T and another relating the the wave speed c and the wavelength.
Defining the wave number k ≡ 2π

L and frequency ω = 2π
T , and use these

to replace the wavelength and period in the two equations. Simplify
the two equations you get so that they looks pretty. Combine the two
to show that ω

k = c.
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2 Fluids

This chapter deals with fluids. In our applications fluids will be
in the form of liquids and gases. Liquids and gases behave differently
than the solid objects we have dealt with so far. However, modern
physical theory recognizes that all matter, whether solid, liquid or gas
is ultimately composed of the same types of particles. It is only the
arrangement of the particles that determines if they will behave to-
gether as a liquid, solid, or gas. A rough, qualitative description of the
three different arrangements of matter is to describe the internal forces
between the particles: A gas has very weak interactions between the
particles, while a liquid has weak to moderate forces between particles,
and finally a solid will have the strongest interactions between particles
holding them together.

One way to determine whether something is solid or liquid is to
push on its surface. If your finger easily breaks the surface, it is a
liquid. If the surface can withstand the push of your finger without
giving, then it is a solid. This does not help distinguish between a
gas and a liquid. To distinguish a liquid from a gas, we could use the
”compressibility test.” Again this is a very qualitative definition: Push
on all sides of a fluid so as to try and reduce its volume. You will find
it much more difficult to do this for a liquid than for a gas.

This chapter will be broken into two major sections: static fluids
and moving fluids. The discussion of moving fluids will be limited to
incompressible liquids.

§ 2.1 Static Fluids

Pressure
We know that there is a difference between sitting on a bench and

sitting on a narrow railing.
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Even though the free body diagram is the same for these two situations,
something is different. Our weight is spread over a larger area when
we sit on a bench. The railing and bench both apply the same force
on us, but the force is spread over a different area. The railing applies
a greater force per area. If we sat on a nail that was sticking up from
the bench, we would certainly notice that the force was spread over a
very small area. Apparently, at times it is the force per area that is
important.

Definition: Pressure
This ratio of the force over the area is called the pressure.

Pressure =
Force

Area

P =
F

A

The units of pressure are Newtons per square meter. This is com-
monly referred to as a Pascal (Pa).

E
x
a
m
p
l
e Compute the pressure at a distance y from the bottom of a stack of

paper of mass M , area A and height h.

y
h

h-y

P (y) =
Fg
A

=
mg

A
=
M (h−y)

h g

A
=
M(h− y)g

hA

Note that the pressure difference can be written in terms of the change
in height.

∆P = −M
hA

g∆y

If we used a different sized piece of paper, would we expect the pressure
to change? No, we would get the same result. Can we see this in the
equation? Yes, because the mass increases in proportion to the area
of the paper. So the ratio M/A is a constant. What is the constant
M/Ah? Since Ah is the volume of the stack of paper and M is the
mass of the stack of paper, M/Ah is the density! So we can write

∆P = −ρg∆y

The negative just tells us that the pressure decreases as we go up, and
increases as we go down.
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Definition: Density
The density of a substance is the ratio of its mass to its volume.

ρ =
m

V

Pressure in a Fluid

If you fill a plastic bag with water you can see that the fluid exerts

a force on the bag. The force appears to always be perpendicular to

the surface of the bag.

This is true with fluids: no matter what way you slice them they

always push outward and perpendicular to the surface of the interface.

F F

F

F
F

This is different from the pressure in the stack of paper. In the

stack of paper the force was directed downward only. In fluids the

pressure at a point can create a force in any direction.
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Theorem: Pressure
It is a homework problem to show that the pressure in a fluid
changes when you move up or down in the fluid. The result of
the homework problem is that if you compare the pressure at two
different positions in a fluid that have a difference in height of ∆y,
then the difference in pressure between these positions is

∆P = −ρg∆y

where ρ is the density of the fluid.

For example the pressure at the bottom of a dam is greater than
the pressure at the top of the dam.

E
x
a
m
p
l
e What is the net force on a small observation window in a whale’s

holding tank. The window is a 10 cm square and is a distance of
h = 10m below the surface? The pressure on one side of the
window is the pressure of the water. The pressure on the other side
is the pressure of the air. Use ∆P = −ρg∆y twice: first between the
surface and the water side and second between the surface and the air
side. Assume the air pressure at the top of the tank is Ps and that
the tank is open to the air. First compute the increase in pressure at a
depth of 10m in the tank:

∆P = −ρg∆y

Pw − Ps = −ρwg(yw − ys)
Pw − Ps = −ρwg(−h) = 98000Pa

Now compute the increase in the pressure of the air outside the window:

∆P = −ρg∆y

Pa − Ps = −ρag(ya − ys)
Pa − Ps = −ρag(−h) = 126Pa

The force on the window is F = Fw − Fa since the force of the air and
the force of the water are in opposite directions. Thus

F = Fw − Fa = PwA− PaA = (Pw − Pa)A

= ((98000Pa + Ps)− (126Pa + Ps))A

= (98000Pa− 126Pa)A = 979N

Notice that we would have induced an error of only about 0.1%
if we had assumed the pressure in the air was the same at the surface
and at the window.
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� Do This Now 2.1

A scuba diver in the ocean goes from the water’s surface to a depth of 10m.

By how much does the pressure on his body increase? If he is in a freshwater

lake how much would the pressure increase?

Buoyancy
We know that things get “lighter” when they are in water. If we

hang a weight from a string and then lower the weight into a pool of
water the tension in the string decreases. If the object is able to float,
then the tension in the string can actually drop to zero.

FT

Fg

Fg

FT Fb

Since the gravitational force does not change when we put the weight
in the water, we know that there must be another upward force that is
supporting the weight, when we put the weight in the water. It must
be that the water applies an upward force to objects in the water. This
force is called the buoyant force.

By a simple observation we can determine the strength of the buoy-
ant force. The observation is that the water surrounding the weight
does the same thing to the weight as it did to the water that was where
the weight is now. This implies that the buoyant force would be the
same on any object that takes up the same space in the water. We
know that this must be true since the water does not have intelligence,
it simply pushes with the same strength on whatever happens to be
next to it.

The reason that this observation will allow us to determine the
strength of the buoyant force is that we can now figure the force on a
chunk of water that has a volume equal to the volume of our object
and know that the force on this chunk of water will be the same as the
force on our object.

Consider then replacing the weight with a chunk of water of the
same shape. Since it is the same as the rest of the water, this water
will be in equilibrium. Thus we know that the net force on this must
be zero. But there are only two forces acting on this chunk, gravity
and the buoyant force, so these must be equal and opposite. We find



12 Fluids 2.1

then that the buoyant force is equal in magnitude to the weight of a
chunk of water that is the same shape as our object:Fb = mwg. This
weight will only depend on the volume of the object not the detailed
shape. We call the volume of the object that is underwater, Vd, the
volume displaced. We can then write the mass of the chunk of water
as mw = ρwVd. With this the buoyant force is Fb = ρwVdg. This will
work for any object submerged in any fluid.

Theorem: Bouyant Force
For an object in a fluid with density ρd the bouyant force on the
object is

Fb = ρdVdg,

where Vd is the mass of the fluid displaced by the object. Or
equivalently

Fb = mdg,

where md is the mass of the water displaced by the object.

E
x
a
m
p
l
e Find the buoyant force on a cube of metal that is 10 cm on a side (a

volume of 1 liter) and has a mass of 20 kg that 1) is fully submerged
and 2) has only half of its volume submerged.
1) For the fully submerged cube, since one liter of water has a mass of
1 kg we can write:

Fb = mdg = (1.0kg)g = 9.8N

or

Fb = ρdVdg = (1000kg/m3)(0.10m)3g = 9.8N

2) For the half-submerged cube, the volume of water displaced is 1/2
of the cube’s volume, so

Fb = ρdVdg = (1000kg/m3)(1/2)(0.10m)3g = 4.9N

E
x
a
m
p
l
e An important measurement of a sailboard is its volume. This volume

is usually given in liters. Suppose that a particular sailboard has a
volume of 120 liters. And that the mass of the sailor, sail, and the
sailboard is 80kg.
• What percentage of the board will be underwater when she stands
on the board and holds up the sail? Since the buoyant force and
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gravity are the only forces, we know that Fb = mg But also Fb = ρdVdg
so that Vd = mg/ρdg = m/ρd

Vd
V

=
m/ρd
V

=
m

ρdV
=

80kg

120kg
= 66.6%

• The density of salt water is greater than the density of fresh water. If
she stands on the board in saltwater (ρ = 1025kg/m3) what percentage
of the board will be underwater?

Vd
V

=
m

ρdV
=

80kg

123kg
= 65.0%

� Do This Now 2.2

A weight with mass 10kg is fully submerged in water, being held up by a

string:

The tension in the string is 92.9N. What is the bouyant force?

BF=Fg−T=5.10N

E
x
a
m
p
l
e In the previous example what is the density of the submerged weight?

Use the bouyant force:

BF = 5.10N = ρwV g,

where V is the weight’s entire volume since it is fully submerged. The
weight’s volume is

V =
BF
ρwg

=
5.10N

(1000kg/m2)(9.8m/s2)
= 5.20× 10× 10−4m3,

and the density is

ρ =
m

V
=

10kg

5.20× 10−4m3
= 19, 200kg/m3.

This is close to the density of pure gold.

. Problem 2.1

An elephant with bare feet and and a woman with spike-heeled shoes
are walking over the ground. The elephant has a mass of about 1000kg
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and its feet are nearly circular with a radius of about 10 cm. The
woman has a mass of about 60kg and the heels of her shoes are nearly
circular with a radius of about 0.4 cm.
(a) Compute the pressure that the elephant creates on the ground when
she walks. (Note, the elephant has at least two feet on the ground at
all times.)
(b) Compute the pressure that the woman creates on the ground when
she walks.

. Problem 2.2

A sheet of plywood is placed over an air mattress and then a 1000kg
elephant stands on the plywood. The air mattress is 1.5 meters by 2.0
meters. You can create a pressure of about 0.5atm when you blow up
the air mattress. Can you blow up the air mattress, while the elephant
is standing on it?

. Problem 2.3

In the jungle you are trying to escape a lion. You decide to hide un-
derwater in a muddy pond, using a hollow reed as a snorkel. If the
maximum pressure difference your lungs can take before collapsing is
0.5atm, how deep can you go?

. Problem 2.4

Consider a small rectangular blob of water that is a small part of all the
water in a swimming pool full of water. Put an imaginary box around
the blob of water as shown. Draw a free body diagram showing all the
forces acting on this box of water. Be sure to include the force due to
the pressure of the neighboring water.

Using Newton’s second law show that
the pressure difference in the fluid between
the top and the bottom of the box is

∆P = Ptop − Pbottom = −ρgh
where ρ is the density of water.

h

b
c

This result shows us that if we move a vertical distance ∆y in a
fluid that the pressure will change:

∆P = −ρg∆y

. Problem 2.5

Hoover Dam, near Las Vegas, Nevada, is 730 feet high. What is the
net force due to pressure on a one-square meter section of the dam at
the bottom?

. Problem 2.6

You go from the top of Mt Diablo (1173m) down to sea level.
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(a) What is the change in pressure for this trip?

(b) Now you get in a submarine and go this same distance (1173m)
below the surface of the ocean. What is the change in pressure for this
second leg of your trip?

. Problem 2.7

A professional scuba diver brings his lunch box to work on the sea floor
at a depth of 200 meters. The lunch box is 10cm× 20cm× 30cm. Find
the net force on each side of the box.

. Problem 2.8

* A tube connecting two containers has a bit of fluid trapped in a low
spot of the tube. The level of the fluid is 10cm higher on the side
connected to container B. The density of the fluid is ρ = 500kg/m3.

(a) Which container is at a greater pressure?

(b) What is the pressure difference?

10 cm

A B

§ 2.2 Moving Fluids

We have dealt with static situations for fluids. How do fluids move,
whether water through a pipe or air across a wing?

Volume Rate of Flow

Suppose that a fluid is running through a pipe, at a velocity v.
Commonly we would like to know at what rate the fluid is delivered.
For example if you are filling a water tank you might want to know how
long it will take to fill the tank. We know that the greater the velocity,
the faster the tank will be filled. We also know that the greater the
cross-sectional area of the pipe, the fast the tank will be filled. So it
would seem that the quantity Av is the rate at which the pipe delivers
fluid. Let us compute the quantity of fluid that runs from the end of
the pipe in a time of ∆t. In this time the fluid in the pipe will have
moved a distance ∆x = v∆t. So that a length of water ∆x will have
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run from the pipe. This means that a volume ∆V = A∆x will have
run from the pipe. Thus

∆V = A∆x = Av∆t −→ dV

dt
= Av

This volume per time that flows past a point in the pipe is called the
volume rate of flow.

Theorem: Equation of Continuity
Notice that if the pipe narrows, the volume rate of flow can not
change, since the flow must go someplace.

vw vn

Aw An

(We are assuming here that the fluid does not compress). Thus
if the area of the wide section is Aw and the velocity at the wide
section is vw and similarly for the narrow section we must have
the following.

Awvw = Anvn

E
x
a
m
p
l
e The pipe going into a house 3/4 inches (1.9cm) in diameter (inside di-

mension). A ”T” in the 3/4 inch line takes a 1/2 inch (1.3cm) diameter
pipe up to the kitchen faucet. If the only water flowing in the house is
through the kitchen faucet and the water enters the house at a rate of
1.5 m/s, at what speed does the water flow out of the sink?
Use the equation of continuity:

Awvw = Anvn,

where the narrow section of pipe is to the faucet and the wide section
is into the house:

−→ vn =
Aw
An

vw =
1.92

1.32
(1.5m

s ) = 3.2m
s .

� Do This Now 2.3

If you use the faucet in the previous example to fill a 5 gallon (19 liter)

bucket, how long will it take?

tfill=45s
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Bernoulli’s Equation

D
e
m
o Attractive Paper: If you blow between two sheets of paper that are

hanging down you would expect the pressure of the air between the
sheets to be greater (since we are blowing) than the pressure outside
the sheets. Thus we expect the sheets to be pushed apart when we
blow. Our intuition in this case is incorrect. The sheets are drawn
together.

So much for that line of reasoning. It went wrong at some point.
The error was in assuming that the air was at a high pressure between
the sheets. In fact by the motion of the paper we see that the pressure
is less between the sheets.

To clarify this reconsider the pipe that narrows in the previous
theorem. We know that the velocity is greater in the narrow section.
This means that as the fluid passed into this narrow section it was
accelerating. Thus there must have been a net force toward the nar-
row section. This means that the pressure of the water behind must
have been greater than the pressure of the water ahead. So it must
be the case that the pressure is lower in the narrow section. This is
counterintuitive. So, be careful.

D
e
m
o The Balancing Ball: If you place a ball in the air stream coming from

a blower we find that the ball is drawn toward the center of the stream.
The ball is drawn toward the fast moving air in the center of the stream.
This makes sense only if the pressure is less where the air is moving
faster. (This would be consistent with the previous demonstration).

D
e
m
o Venturi Tube: Let us make one final test of this idea that fast moving

air is at a lower pressure. We will force air through a pipe with a
constriction in the middle. This middle section has a small whole in
the side with a tube fitted to the hole.

air in

It seems that air should be force out of this hole, but if it is true that
fast moving air is at a lower pressure then the middle section should
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be at a lower pressure and thus will draw air into the hole. To test this
we can put the tube in a container of water and see if it draw water in
or blows bubbles.

This system is used to spray perfume: a small squeezable bulb is
used to force air through the narrow section, and the perfume is drawn
up into the air stream and spewed out the end. The bottle using this
technique to disperse perfume is called an ”atomizer.”

A engine carburetor also works by this principle. The air flowing
into the engine is drawn through a narrow section. Gasoline is lead
to this section by a small tube. The low pressure in this section draw
the gasoline from the tube into the airflow which is headed toward the
engine.

An wing also works by the same principle. The air going over the
top of the wing goes faster and thus the pressure is lower on this side.
This causes a net force on the wing.

vtop

vbottom

Theorem: Bernoulli’s equation
By using the work energy theorem we can find the following result,
which allows us to compute the pressure difference between two
points in a moving fluid.

∆[P + 1
2ρv

2 + ρgy] = 0

or
∆P + ∆[ 1

2ρv
2] + ∆[ρgy] = 0

Thus the quantity [P + 1
2ρv

2 + ρgy] is the same at all points in
fluid. (It is assumed that the fluid is flowing without turbulence
or friction).

There are two special cases of Bernoulli’s equation that are worth
mentioning.

First notice that if the velocity is the same at both points, then
∆v2 = 0 and thus ∆P + 0 +ρg∆y = 0 −→ ∆P = −ρg∆y. This is the
equation we have been using to find the pressure difference due to a
difference in elevation. Thus we can just remember Bernoulli’s equation
and forget the more limited one. You can then use those freed-up brain
cells for something else, like your mother’s shoe size.
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Second notice that in air the term ρg∆y gives a minor pressure
difference, unless ∆y is very large. Thus we can usually ignored this
term.

E
x
a
m
p
l
e Suppose a sail is designed so that the air moving over the inside of the

sail travels at a speed that is 90% of the speed of the air moving over
the outside of the sail: vin = 0.90vout. The area of the sail is 4.5m2.

vout

vin

How fast will the air need to go over the outside of the sail in order to
produce a force of 200 Newtons?

F = Fin − Fout

= PinA− PoutA = ∆PA = −∆[ 1
2ρv

2]A

= −[ 1
2ρv

2
in − 1

2ρv
2
out]A

= −[ 1
2ρ(0.90vout)

2 − 1
2ρv

2
out]A

= − 1
2ρ[(0.90)2 − 1]Av2

out

= (0.19) 1
2ρAv

2
out

−→ vout =

√
F

(0.19) 1
2ρA

= 19m
s

Notice that the term ρg∆y would have contributed a force of F =
Aρg∆y ≈ 0.5N. This is small compared with the force of 200 N.

. Problem 2.9

You wade across a stream and find that the speed of the water is 0.62m
s

at this part of the stream. The stream is 4.2 meters wide and 0.85
meters deep where you walked across.

(a) What is the volume rate of flow of this stream?

(b) You now move down to a narrow point in the stream. Here the
stream is only 1.2 meters wide and moving at a speed of 2.7m

s . How
deep is the stream at this narrow point?

. Problem 2.10

You are watering a lawn. When you squirt the hose at a 45◦ angle as
shown, the water lands about five meters from you.
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5 m

(a) Estimate the velocity of the water as it leaves the nozzle?
(b) The opening in the nozzle is a circular hole with a diameter of 4
mm. What is the volume rate of flow from the nozzle?
(c) You proceed to water a lawn with this hose. The lawn is a square
that is 10 meters on a side. How long will it take to give the lawn an
equivalent of 2.0 cm of rain?

. Problem 2.11

The wings of an airplane give a lift of 104N and they have an area of
10m2. The air is moving at a speed of 300m

s under to bottom of the
wing. What is the speed of the air moving over the top of the wing?

. Problem 2.12

A tube with a fluid running through it has a wide section with cross-
sectional area Aw and a narrow section with cross-sectional area An.
There are two pressure sensors attached to the tube, one is placed at
the narrow section and the other at the wide section.

Aw An

Pn

Pw

From the pressure readings Pw and Pn you can determine the volume
rate of flow in the tube.
(a) Show that in general, the volume rate of flow in this system is given
by the equation below.

dV

dt
=

√√√√ 2(Pw − Pn)

ρ
(

1
A2
n
− 1

A2
w

)
(b) Suppose the fluid is water, the radius of the wide section is 2.0cm
and the radius of the narrow section is 1.0cm and the pressures are
Pw = 1.2 × 105Pa and Pn = 1.1 × 105Pa. What is the volume rate of
flow?

. Problem 2.13

Sailboats can sail upwind. The reason that a sailboat can move upwind
is that a sailboat has two “wings”. The sail is a wing that extends
upward from the boat into the air. What is not obvious is that there
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is also a wing that extends downward into the water from the bottom
of the boat.

wind

water-wing

air-wing

Show with a force diagram that the lift from these two wings can give
a net force in the forward direction even if this forward direction is
upwind.

. Problem 2.14

Suppose that you have a house with a flat roof as shown and that there
is a strong wind blowing over the house at a speed of 30m

s . The roof is
8 meters by 13 meters.

30 m/s

(a) What is the net force on the roof due to the pressure difference
between the inside and outside of the house?

(b) Is this force upward or downward?

. Problem 2.15

A pipe carrying gasoline goes up a short vertical rise of 3.0 meters while
at the same time the radius of the pipe doubles. The velocity of the
gasoline is 8.0m

s in the smaller section of pipe. What is the change
in the pressure of the gasoline as it goes from the smaller pipe to the
larger pipe?
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3.0 m

. Problem 2.16

Consider a wing. Let the velocity of the wing in the fluid be v and
assume that the change in velocities of the fluid on the fast and slow
sides of the wing are proportional to the velocity. This assumption
seems justified since the geometry of the wing should determine the
relative velocity shift δv

v = ε and so this ratio is expected to be in-
dependent of the velocity. With this assumption we are lead to the
expression of the velocities on the fast and slow sides of the wing as

vfast = v + δv = v

(
1 +

δv

v

)
= v(1 + ε)

vslow = v − δv = v

(
1− δv

v

)
= v(1− ε)

Now show that if we ignore the gravitational potential energy that the
lift on the wing is

Flift = 1
2ρv

2ACL

where CL = 4ε. The constant CL is called the lift coefficient.
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§ 2.3 Summary

Definitions

• Density

ρ =
m

V

• Pressure

P =
F

A

Theorems

• Volume rate of flow
dV

dt
= Av

• Equation of continuity for incompressible fluid

dV1

dt
=
dV2

dt

• Bernoulli’s Equation

∆[P + 1
2ρv

2 + ρgy] = 0
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3 Holthuijsen Ch 1 & 2

§ 3.1 Problems Ch 1

. Problem 3.1

In Holthuijsen chapter 1 the author describes different scales. Scale
(2) is the subject addressed by most of the book. The author justifies
why the detailed analysis used for scale (1) is not used in scale (2),
with reasons a through d. The predictive power of the spectral analysis
used in scale (2) depends in large part on the extent to which the linear
approximation of the theory is justified. The linear theory implies that
sinusoidal component waves exist independently on the surface, not
effecting each other. There are cases in which the full non-linear theory
allows one wave to “rob” energy from other waves. This collecting of
energy into a single wave leads to waves of much larger amplitude than
is predicted by the linear theory. The existence of these unexpectedly
large waves would make unreasonable which of the reasons a through
d?

§ 3.2 Observation Techniques

• Buoys: accelerometer on a buoy.
• Wave Poles: resistance or capacitance of sea water. Requires fixed
platform in the sea.
• Tide Gauges: pressure transducer on the sea floor.
• Lidar Altimeter: distance to sea surface from a platform of known
position. Platform could be airborne or on a satellite.
• Radar Altimeter: distance to sea surface from a platform of known
position. Platform could be airborne or on a satellite.
• Imaging SAR: distance to sea surface from a moving platform, ob-
serves many places at once. Because of side-looking antenna accuracy
is limited. SAR is Synthetic Aperture Radar, a technique of faking a
very large antenna to be able to focus on a small area.
• SAR Altimeter: hybrid between Radar Altimeter and imagining SAR.

§ 3.3 Problems Ch 2

. Problem 3.2

What are the two most common techniques to measure waves at sea?
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. Problem 3.3

What are the two most common techniques to obtain directional wave
information based on these techniques?

. Problem 3.4

Is it possible to measure the surface profile of individual waves from
satellites?

. Problem 3.5

On the class webpage is a data file buoy.mat or buoy.txt which con-
tains buoy data from a buoy off the California coast Point Reyes CA.
The data is sampled at a rate of 1.28 samples per second. Compute
the Fourier transform and plot the power versus frequency.

. Problem 3.6

The antenna gain of a radar altimeter is

G = 2−(x2+y2)/(hθ)2

= e− ln(2)(x2+y2)/(hθ)2

with the antenna beam width at half power of θ = 0.01rad, and the
satellite altitude of h = 717km, and (x, y) is the location on the sea
surface, with (0, 0) directly below the satellite. If the height of the
sea at location (x, y) is z then the distance between the point and the
satellite is

r =
√

(h− z)2 + x2 + y2.

Simulate the return power from the sea surface versus time for the cases
below. If you get stuck look at the hints section.
(a) A perfectly calm sea, thus the sea surface height is z = 0
(b) There is a perfect swell of height H and wavelength L.

z =
H

2
cos(kxx+ kyy)

with ~k the vector wave number for the swell, that is ~k it is a vector of
magnitude 2π

L who’s direction is the direction the swell is moving.
(c) The sea surface height z is a random variable uniformly distributed
from −H/2 to H/2
(d) The sea surface height z is a random variable with a gaussian dis-
tribution with standard deviation H/4.
(e) The sea surface height z is the superposition of a perfect swell of
height Hs and a gaussian random sea with standard deviation Hw/4.
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4 Hydrodynamics

§ 4.1 Representation of fluid flow
At each fixed point at each time the fluid will move with a partic-

ular velocity. We will write this velocity as the time dependent vector
field ~u(x, y, z, t). We denote the density of the fluid as a scalar field
ρ(x, y, z, t). In our case the fluid we are going to study is the sea, and
we are particularly interested in the surface of the sea, that is the in-
terface between the water and the air. This interface will be described
by the scalar field η(x, y, t) which gives the displacement in the vertical
direction of the surface from the equilibrium height at position (x, y)
at time t.

§ 4.2 Bernoulli’s Equation
We will begin by considering the simpler case of a constant flow in

which case we know that ∂~u
∂t = 0. We will also suppose that the density

of the fluid is constant and uniform.

Consider a small surface A1 who’s normal is everywhere parallel to ~u.
The mass rate or flow through this area is

dm

dt
=
d[ρV]

dt
= ρ

dV
dt

= ρA1u1

Consider now another surface A2 bound by the same stream lines as
A1, but further down the flow. The mass rate or flow though A2 is

dm

dt
= ρA2u2

But no mass flows across the stream lines so since mass is not building
up or leaving the volume enclosed by the stream lines and the two
areas, we see that the mass flow rate the two ends must be the same.
Thus we find that

A1u1 = A2u2 = constant
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and we call this constant the volume rate of flow. Let us suppose that
the volume rate of flow through this particular stream line bounded
region is R.

Now let’s follow the mass that is between A1 and A2 for a short
time dt. A volume of water R dt will come out of the A2 and the volume
that R dt that was up against A1 will have moved down the stream a
distance ds1. We want to compute the change in the mechanical energy
of this section of water. While all of the water has moved, the energy
difference is the same as if we just moved the water from the left R dt
to the right R dt. Thus the change in energy of the total mass of water
is the energy difference of these two slugs of water: dE = dE2 − dE1.

dE1 = 1
2dm1v

2
1 + dm1gz1 = 1

2ρR dt v2
1 + ρR dt gz1

likewise
dE2 = 1

2ρR dt v2
2 + ρR dt gz2

and so
dE = 1

2ρR dt (v2
2 − v2

1) + ρR dt g(z2 − z1)

By the work energy theorem this change in energy must be equal to
the net work done on the mass of water. At A1 the pressure does an
amount of work on the water of

dW1 = ~F1 · ~ds1 = P1A1ds1 = P1A1u1dt = P1R dt

while at A2 the pressure does an amount of work

dW2 = ~F2 · ~ds2 = −P2R dt

since the displacement and the pressure force are in opposite directions
the dot product is negative at A2. The net work is thus

dW = dW2 + dW1 = −(P2 − P1)R dt

Since we know that dE = dW we can say that
1
2ρR dt (v2

2 − v2
1) + ρR dt g(z2 − v1) = −(P2 − P1)R dt

or
1
2ρ(v2

2 − v2
1) + ρg(z2 − z1) + (P2 − P1) = 0

or
1
2ρv

2 + ρgz + P = constant
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§ 4.3 A bug in water

Suppose that you have a bug that is a fluid and moving with

the fluid. Also suppose that you have a temperture field for the fluid,

T (x, y, z, t) which gives the temperature of the fluid at position (x, y, z)

at time t. Now we would like to know the position ~r(t) and temperature

Tb(t) of the bug as it moves along with the fluid. We want to write

these things out in terms of the velocity field ~u(x, y, z, t) of the fluid.

Let the position of the bug be ~r(t) = rx(t)x̂+ry(t)ŷ+rz(t)ẑ. Then

we note that the velocity of the bug is

~v(t) =
d~r

dt
= ~u(rx(t), ry(t), rz(t), t)

and so

~r(t) = ~r(0) +

∫ t

0

~u(rx(τ), ry(τ), rz(τ), τ)dτ

The temperature of the bug Tb can be computed from the temperature

field T (x, y, z, t)

Tb(t) = T (rx(t), ry(t), rz(t), t)

So that

dTb
dt

=
d

dt
T (rx(t), ry(t), rz(t), t)

=
∂T

∂t

dt

dt
+
∂T

∂x

drx
dt

+
∂T

∂y

dry
dt

+
∂T

∂z

drz
dt

=
∂T

∂t
+
∂T

∂x
ux +

∂T

∂y
uy +

∂T

∂z
uz

=
∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z

=
∂T

∂t
+

(
ux

∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

)
T

=
∂T

∂t
+ (~u · ∇)T

The object (~u · ∇) is called the directional derivative and is the rate of

change in the direction ~u.
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We can find the acceleration of the bug in a similar way.

~a(t) =
d~v

dt
=

d

dt
~u(rx(t), ry(t), rz(t), t)

=
∂~u

∂t

dt

dt
+
∂~u

∂x

drx
dt

+
∂~u

∂y

dry
dt

+
∂~u

∂z

drz
dt

=
∂~u

∂t
+
∂~u

∂x
ux +

∂~u

∂y
uy +

∂~u

∂z
uz

=
∂~u

∂t
+ (~u · ∇)~u

Theorem: Acceleration of a particle following a flow
If the velocity field in a fluid is ~u then the acceleration of a particle
moving with the field is given by

~a(t) =
∂~u

∂t
+ (~u · ∇)~u

There is a vector calculus identity that says
1
2∇(~u · ~u) = (~u · ∇)~u+ ~u× (∇× ~u)

With this we can write

Theorem: Acceleration of a particle following a flow: alt
If the velocity field in a fluid is ~u then the acceleration of a particle
moving with the field is given by

~a(t) =
∂~u

∂t
+ 1

2∇(u2)− ~u× (∇× ~u)

. Problem 4.1

Consider a bucket of water that has been set in motion, circling around
counter clockwise inside the bucket with a constant angular velocity ω.
There is a bug in the water. Working in rectangular coordinates do the
following.
(a) Show that the velocity field is ~u = −ωy x̂+ ωx ŷ.
(b) Show that ~u · ∇ = −ωy ∂

∂x + ωx ∂
∂y .

(c) Compute (~u · ∇)~u.
(d) Compute the acceleration of the bug using ~a(t) = ∂~u

∂t + (~u · ∇)~u
(e) Compare this acceleration with what you know about going in circles
from first semester physics.
(f) Show that ∇× ~u = 2ωẑ.
(g) Show that 1

2∇(~u · ~u) = (~u · ∇)~u + ~u× (∇× ~u) by computing both
sides of the equation. Note that you have already done most of this.
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§ 4.4 Identities from vector calculus

We will need some results from your vector calculus class.

We consider a closed surface S bounding the area A, in which there
is a scalar field ψ and vector fields ~u and ~v. In the expression below
~dA is a surface element in the direction of the outward normal.

Divergence theorem:∫
V

∇ · ~u dV =

∮
S

~u · ~dA

Noname theorem: ∫
V

∇ψ dV =

∮
S

ψ ~dA

§ 4.5 Einstein notation

We use the notation

ê1 = x̂

ê2 = ŷ

ê3 = ẑ

for the coordinate unit vectors. We write

~u = u1ê1 + u2ê2 + u3ê3 = uiêi

where there is an implicit sum over i, that is uiêi a shorthand for

uiêi ≡
3∑
i=1

uiêi.

Using the same notation we can write out other things as well.

~u · ~v = uivi

∇ · ~v = ∂ivi =
∂vi
∂xi

∇ψ = ∂iψ êi =
∂ψ

∂xi
êi

Definition: Levi-Civita symbol
Define the Levi-Civita symbol εijk by the following rules.

εijk =

{
+1 if (i, j, k) is (1,2,3) or (2,3,1) or (3,1,2)
−1 if (i, j, k) is (3,2,1) or (2,1,3) or (1,3,2)

0 otherwise
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Theorem: Levi-Civita symbol patterns
The following are always true for any i, j, and k.

εijk = εkij = εjki

and

εikj = −εijk AND εkji = −εijk AND εjik = −εijk

Using the Einstein notation and the Levi-Civita symbol we can
write the cross product in a simple form. In some sense it has 27 terms
but 21 of these terms are zero, adding these zero terms allows us to
write the cross product in a uniform way.

~u× ~v = (u2v3 − u3v2) ê1 − (u1v3 − u3v1) ê2 + (u1v2 − u2v1) ê3

= u2v3ê1 − u3v2ê1 − u1v3ê2 + u3v1ê2 + u1v2ê3 − u2v1ê3

= ε231u2v3ê1 + ε321u3v2ê1 + ε132u1v3ê2

+ ε312u3v1ê2 + ε123u1v2ê3 + ε213u2v1ê3

= ε231u2v3ê1 + ε321u3v2ê1 + ε132u1v3ê2

+ ε312u3v1ê2 + ε123u1v2ê3 + ε213u2v1ê3

+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0

= εijkuivj êk

Thus the k-th component of ~u× ~v is [~u× ~v]k = εijkuivj where there is
no implicit sum over k because there is only one k in the expression.

In the same way we can write.

∇× ~u = εijk∂iuj êk

. Problem 4.2

Prove that ∇ · [ρ~u] = ~u · ∇ρ+ ρ∇ · ~u.

. Problem 4.3

Show that ~u× (∇× ~u) = 1
2∇(~u · ~u)− (~u · ∇)~u.

. Problem 4.4

Prove that ∇× (~u× ~v) = ~u(∇ · ~v)− ~v(∇ · ~u) + (~v · ∇)~u− (~u · ∇)~v

§ 4.6 Equation of Continuity
The volume rate of flow going though an infinitesimal area ~dA is

dV

dt
= ~u · ~dA

Thus the rate of mass flowing through the area is

dm

dt
= ρ

dV

dt
= ρ~u · ~dA
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Consider an arbitrary closed surface S in the fluid flow. The rate of
change of mass in the volume is

dm

dt
= −

∮
S

ρ~u · ~dA

where the direction of ~dA is taken to be the outward normal. But by
the divergence theorem this is also

dm

dt
= −

∮
S

ρ~u · ~dA = −
∫
V

∇ · [ρ~u] dV

where the integral is over the volume V contained inside the surface S.
Now we also know that the total mass in the volume is

m =

∫
V

ρ dV −→ dm

dt
=

∫
V

∂ρ

∂t
dV

and so ∫
V

∂ρ

∂t
dV = −

∫
V

∇ · [ρ~u] dV∫
V

[
∂ρ

∂t
+∇ · [ρ~u]

]
dV = 0

But the surface S is arbitrary so the only way for this integral to always
be zero is for the integrand to be zero!

∂ρ

∂t
+∇ · [ρ~u] = 0

There is a “product rule” for the divergence, like there is for the regular
derivative. The divergence of a product of a scalar field and a vector
field can be written as ∇ · [ρ~u] = ~u · ∇ρ+ ρ∇ · ~u so the above can also
be written as

∂ρ

∂t
+ ~u · ∇ρ+ ρ∇ · ~u = 0

Theorem: Equation of continuity
The three following expressions are equivalent.

∂ρ

∂t
+∇ · [ρ~u] = 0

∂ρ

∂t
+ ~u · ∇ρ+ ρ∇ · ~u = 0

dρb
dt

+ ρ∇ · ~u = 0

where ρb is the density of the water around the bug that is flowing
with the water.

Notice that if the fluid is incompressible that the density of the
water around the bug does not change, dρbdt = 0, and thus ∇·~u = 0.
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Theorem: Equation of continuity for incompressible fluid

∇ · ~u = 0

. Problem 4.5

Consider the following velocity fields. Do they satisfy the equation of
continuity for an incompressible fluid?

(a) ~u = −ωy x̂+ ωx ŷ.

(b) ~u = ωx x̂− ωy ŷ.

(c) ~u = α(y2 − x2) x̂+ 2αxy ŷ.

(d) ~u = sinh(κx) cosh(κy) x̂− cosh(κx) sinh(κy) ŷ.

§ 4.7 Force caused by pressure

We saw in the previous chapter that due to energy considera-
tions that the pressure was related to changes in velocity in the fluid
(Bernoulli’s equation). It is also possible to look at this relationship as
the pressure causing a force on the water which leads to an accelera-
tion of the water. Let us start this investigation by looking at the force
caused by pressure.

We consider a volume V of water contained by a closed surface
S. The net pressure force on the volume of water will be result of the
inward pressure on the surface

~FP =

∮
S

P (−n̂)dA = −
∮
S

P ~dA

where the direction of the vector ~dA is the outward normal n̂ of the
surface. But we can express this surface integral as a volume integral
of the gradient of the pressure.

~FP = −
∫
V

∇P dV

Thus the pressure force per mass is

~p =
FP
m

= −
∫
V
∇P dV∫
V
ρ dV

If we take the limit as the volume becomes small the gradient and
density become uniform over the volume and thus

~p = lim
V→0

FP
m

= − lim
V→0

∫
V
∇P dV∫
V
ρ dV

= − lim
V→0

∇P V

ρ V
= −∇P

ρ
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§ 4.8 Force caused by gravity
In the same way we can get the force caused by gravity per mass.

The net gravitational force on a volume V of water is

~FG =

∫
V

(−gẑ) ρ dV = −gẑ
∫
V

ρ dV

where g is the magnitude of the local gravitational field. The gravita-
tional force per mass is then

~g =
~FG
m

=
−gẑ

∫
V
ρ dV∫

V
ρ dV

= −gẑ

which is just the gravitational field.

§ 4.9 From Newton’s Second Law
Now we can write out Newton’s second law for a small volume V

of water.
m~a =

∑
~F

−→ ~a =
∑ ~F

m

~a =
~FP
m

+
~FG
m

~a = ~p+ ~g

∂~u

∂t
+ 1

2∇(u2)− ~u× (∇× ~u) = −∇P
ρ
− gẑ

Theorem: Equation of motion for a fluid

∂~u

∂t
+ 1

2∇(u2)− ~u× (∇× ~u) +
∇P
ρ

+ gẑ = 0

In a flow with conservative forces the fluid is irrotational.

∇× ~u = 0

and thus can be expressed as the gradient of a scalar potential field

~u = ∇φ
We call φ the velocity potential field. Putting this into our equation of
motion we get.

∂∇φ
∂t

+ 1
2∇
(
|∇φ|2

)
+
∇P
ρ

+ gẑ = 0

or

∇
[
∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz

]
= 0
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which implies that

∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz = constant

Theorem: Equation of motion for irrotational fluid
With ~u = ∇φ

∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz = constant

For an incompressible fluid we know that the divergence of the
velocity field is zero. Thus for an irrotational incompressible fluid we
can say that

∇ · ~u = ∇ · ∇φ = ∇2φ = 0

So the velocity potential satisfies Laplace’s equation.

Theorem: Equation of motion for irrotational incompress-
ible fluid
With ~u = ∇φ

∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz = constant

and
∇2φ = 0

. Problem 4.6

Let us return to the bucket of swirling water that we keep talking about.
Recall that we already calculated that

~a =
∂~u

∂t
+ 1

2∇(u2)− ~u× (∇× ~u) = −ω2~r.

(a) Use the equation of motion for a fluid to find the pressure in the
fluid at an elevation z and at a distance r from the center.
(b) Let the height of the upper surface of the water be the function
η(r). Presume that the pressure of the water is zero at the surface to
find η(r).

. Problem 4.7

Consider the following velocity fields. Is it possible to represent these
fields as the gradient of a scalar potential field? If so find the scalar
potential field.
(a) ~u = −ωy x̂+ ωx ŷ.
(b) ~u = ωx x̂− ωy ŷ.
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(c) ~u = α(y2 − x2) x̂+ 2αxy ŷ.
(d) ~u = sinh(κx) cosh(κy) x̂− cosh(κx) sinh(κy) ŷ.

§ 4.10 Boundary conditions
The top surface of the water is the interface between the air and

the water. We represent this shape by the function η(x, y, t) which
is the vertical position of the surface of the water at the horizontal
position (x, y) at time t. If the sea was completely flat then η = 0.

BC at a rigid surface
In a fluid in contact with a rigid boundary (such as the sea floor)

the normal component of the velocity of the fluid must be zero

[n̂ · ~u]surface = 0

where n̂ is the normal to the surface.

BC at the top surface: kinematic
A particle at the surface stays at the surface. Let the trajectory

of a particle at the surface be ~r(t). Then we can say that for all times
t that

ẑ · ~r = η(x̂ · ~r, ŷ · ~r, t)

and thus also
d

dt
ẑ · ~r =

d

dt
η(x̂ · ~r, ŷ · ~r, t)

d

dt
ẑ · ~r =

∂η

∂x

d

dt
x̂ · ~r +

∂η

∂y

d

dt
ŷ · ~r +

∂η

∂t

∂

∂t
t

ẑ · d~r
dt

=
∂η

∂x
x̂ · d~r

dt
+
∂η

∂y
ŷ · d~r

dt
+
∂η

∂t

ẑ · ~u =
∂η

∂x
x̂ · ~u+

∂η

∂y
ŷ · ~u+

∂η

∂t

uz =
∂η

∂x
ux +

∂η

∂y
uy +

∂η

∂t

OR
∂φ

∂z
=
∂η

∂x

∂φ

∂x
+
∂η

∂y

∂φ

∂y
+
∂η

∂t

This condition only applies at the top surface. To make this more clear
we write. [

uz −
∂η

∂x
ux −

∂η

∂y
uy

]
z=η

− ∂η

∂t
= 0

or [
∂φ

∂z
− ∂η

∂x

∂φ

∂x
− ∂η

∂y

∂φ

∂y

]
z=η

− ∂η

∂t
= 0
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BC at the top surface: dynamic
The density of air is so much smaller than the density of water

that differences in the pressure of the air from one place to another are
usually insignificant. Thus in cases where the variation in air pressure
are not significant, the pressure at the surface, of the water will be
constant.

There is an additional force at the surface besides the pressure
gradient and gravity. At the surface the cohesion of the water (the
surface tension) tries to flatten the surface, like stretched rubber sheet
wants to flatten out bumps. This causes the pressure on the water
side of the interface not to be equal to the pressure on the air side.
The pressure difference is −τs∇2η, where τs is the surface tension of
water. So that if we let the air pressure be zero then the pressure just
inside the water is P = −τs∇2η. With this we can use the dynamical
equation

∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz = constant

to find the condition dynamical boundary condition at the top surface.[
∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

− τs∇2η

ρ
+ gη = 0

The surface tension is expected to be insignificant except when the
wavelength of the surface disturbance is much less than a meter. If the
surface tension is negligible compared with the other terms then we
have [

∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

+ gη = 0

Theorem: Boundary Conditions
If ∇× ~u = 0 and ∇ · ~u = 0

[n̂ · ∇φ]surface = 0 Rigid[
∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

+ gη = 0 Dynamic[
∂φ

∂z
− ∂η

∂x

∂φ

∂x
− ∂η

∂y

∂φ

∂y

]
z=η

− ∂η

∂t
= 0 Kinematic

The first of the boundary conditions is linear in the velocity poten-
tial field, but the last two are non-linear because they contain a product
of two fields, for example ∂η

∂y
∂φ
∂y . In the case that the displacement is

small it is sometimes possible to ignore these product terms since if the
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field is small the square of the field will be smaller. In this case we get
the following linearized boundary conditions.

Theorem: Linearized Boundary Conditions
If the movements are relatively small.

[n̂ · ∇φ]surface = 0 Rigid[
∂φ

∂t

]
z=0

+ gη = 0 Dynamic[
∂φ

∂z

]
z=0

− ∂η

∂t
= 0 Kinematic

§ 4.11 2-D Standing Wave

. Problem 4.8

Suppose that the water is trapped between vertical walls at x = 0 and
x = L. Try a solution of the form

φ = A cos(ωt) cosh(k(z + d)) cos(kx−D)

where the bottom of the container is at to location z = −d.
(a) Show that the boundary condition at the bottom is satisfied.
(b) Applying the boundary conditions at the two rigid walls. What
restrictions do you find on D and k?
(c) Apply the linearized boundary conditions at the top surface to find
η(x, t).
(d) Is there any restriction on the choice of ω?

§ 4.12 2-D Separable solutions to Laplace’s equation
A common way to try and solve a partial differential equation is

to try a function that is a product of single variable functions and see
if the differential equation can be separated. This usually works pretty
well for Laplace’s equation.

Laplace’s equation is a differential equation in the spacial vari-
ables (x, y, z). We will first look for a 2-D solution, one that has
no dependence on y. To this end we propose a solution of the form
φ(x, y, z, t) = f(x, t)h(z, t). Notice that there is no dependence on y so
that ux = ∂φ

∂y = 0, so this would be a motion in the x− z plane. Now
we write out Laplace’s equation.

∇2φ =
∂2f

∂x2
h+ f

∂2h

∂z2
= 0
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−→
∂2f
∂x2

f
+

∂2h
∂z2

h
= 0

−→
∂2h
∂z2

h
= −

∂2f
∂x2

f
= constant

Let us call the constant k2 then we have to two equations

∂2h

∂z2
= k2h AND

∂2f

∂x2
= −k2f

The solution to the first is

h = Aekz +Be−kz

and the solution to the second is

f = C cos(kx−D)

where A,B,C and D are possibly functions of time.
We pick our coordinate system so that z = 0 correspond to the

mean sea level. If the water has a depth d then the sea floor is at the
location z = −d. Assuming that the sea floor is flat then the normal
the the bottom surface is n̂ = ẑ and so

[ẑ · ∇φ]z=−d =

[
∂φ

∂z

]
z=−d

= 0

−→
[
∂h

∂z

]
z=−d

= 0

−→
[
kAekz − kBe−kz

]
z=−d = 0

−→ Ae−kd = Bekd

Using this we can rewrite the expression of h to remove B in favor of
A.

h = Aekz +Be−kz

= Ae−kdek(z+d) +Bekde−k(z+d)

= Ae−kd(ek(z+d) + e−k(z+d))

= 2Ae−kd cosh(kz + kd)

Together then we have

φ = 2Ae−kd cosh(kz + kd)C cos(kx−D)

we might as well combine the constant 2Ae−kd with the arbitrary func-
tion of time C to give E = 2Ae−kdC and

φ = E cosh(kz + kd) cos(kx−D)

We will at times use the notation ζ = kz + kd and ξ = kx−D then

φ = E cosh ζ cos ξ
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Let us review what we have. For arbitrary functions D(t) and E(t)
and constant k the function φ = E cosh(k(z + d)) cos(kx−D) satisfies
the boundary conditions at the sea floor and ∇2φ = 0 throughout the
body of the sea.

In the homework problems you will show that a sum of these func-
tions with different values of k,D, and E,

φ =
∑
k,D,E

φk,D,E

will also satisfy the boundary condition [ẑ · ∇φ]z=−d = 0 and ∇2φ = 0,
since both the boundary condition and the ∇2φ = 0 are linear in φ.

. Problem 4.9

Let φ1 = E1 cosh(k1(z + d)) cos(kx − D1) and φ2 = E2 cosh(k2(z +
d)) cos(kx −D2). Now let φ = a1φ1 + a2φ2, with a1 and a2 arbitrary
constants. Show that ∇2φ = 0 and [ẑ · ∇φ]z=−d = 0.

. Problem 4.10

Show that if φ = E cosh ζ cos ξ where ζ = k(z + d) and ξ = kx − D
then
(a) ~u = ∇φ = −kE cosh ζ sin ξx̂+ kE sinh ζ cos ξẑ.
(b) |∇φ|2 = ∇φ · ∇φ = k2E2

(
sinh2 ζ + sin2 ξ

)
(c) ∂φ

∂t = cosh ζ
(
dE
dt cos ξ + E dD

dt sin ξ
)

§ 4.13 2-D Traveling Wave for Linearized BC’s
If we set D = kvt and let E be a constant then we get a wave

moving in the x direction without changing shape with a speed v.

φ = E cosh(k(z + d)) cos(k(x− vt))
For notational convenience we will use the notation ω = kv. Then we
can write

φ = E cosh(k(z + d)) cos(kx− ωt) = E cosh ζ cos ξ

with ξ = kx− ωt.
. Problem 4.11

Use the linearized BC’s to determine the surface shape η and the rela-
tionship between ω and k for the 2-D traveling wave.

. Problem 4.12

In the previous problem you found a relationship between the wave
number k and the frequency ω for the 2-D traveling wave in the ap-
proximation that the linearized BC’s are ok.
(a) Compute the phase velocity vp = ω

k and .

(b) Compute the group velocity ∂ω
∂k .

(c) Show that if the water is very deep that vp =
√

g
k .
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(d) Show that
vg
vp

= 1
2 + kd

sinh(2kd) .

(e) Define v∞ =
√

g
k . Graph the ratio

vp
v∞

versus d
λ = kd

2π for values
from 0 to 1, (λ is the wavelength of the wave).
(f) Graph the ratio

vg
vp

versus d
λ .

. Problem 4.13

Do a contour plot of the velocity potential at t = 0 for z = 0 to −d and
for x = 0 to λ for the following cases. Add the vector field if you can
figure out how to do so. For those using Matlab the function quiver

will be very helpful for plotting the vector field.
(a) With d = λ.
(b) With d = λ/2.
(c) With d = λ/5.
(d) With d = λ/10.

. Problem 4.14

Consider the case of shallow water.
(a) Show that in the limit that kd→ 0 that the phase velocity depends
on the depth of the water but not the wavelength of the wave.
(b) Show that in the limit that kd → 0 that the phase velocity and
group velocity are the same.
(c) Graph the period versus the wavelength for wavelengths from 1
meter to 1000 metes and for water depths of (10, 30, 100, 300, ∞)
meters.

Getting to know the motion
Let us understand the significance of the constant E. In the home-

work we found that with φ = E cosh ζ cos ξ the surface is given by

η = −Eω
g

cosh(kd) sin ξ = − E

ω/k
sinh(kd) sin ξ = −E

vp
sinh(kd) sin ξ

So the surface traveling wave has an amplitude a = E
vp

sinh kd. Thus

we find that E =
a vp

sinh(kd) and we can then rewrite the velocity potential

in terms of a.

φ = a vp
cosh ζ

sinh(kd)
cos ξ =

aω

k

cosh ζ

sinh(kd)
cos ξ

and the velocity as

~u = ∇φ = ka vp
−cosh ζ sin ξx̂+ sinh ζ cos ξẑ

sinh(kd)

= aω
−cosh ζ sin ξx̂+ sinh ζ cos ξẑ

sinh(kd)

In the case that the water is deep this reduces to

~u = ka vpe
kz [− sin ξx̂+ cos ξẑ] = aωekz [− sin ξx̂+ cos ξẑ]
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Now let us consider the motion ~r(t) = rx(t)x̂+ rz(t)ẑ of a bug in
the water. We know that

~r(t) = ~r(0) +

∫ t

0

~u(rx(τ), rz(τ), τ)dτ

which is problematic to solve. We have already assumed that the am-
plitude of the motion a is small, so this means that ~r(t) does not move
too much from ~r(0). For this reason we hope that ~u does not vary too
much over the range the bugs movement, and we may approximate

~u(rx(τ), rz(τ), τ) ≈ ~u(rx(0), rz(0), τ) = ~u(τ)

Since all horizontal positions are equivalent we can choose WOLOG
that rx(0) = 0, then we can approximate

~u(t) ≈ aω

sinh(kd)
[−cosh ζ0 sin ξx̂+ sinh ζ0 cos ξẑ]

with ζ0 = krz(0) + kd and ξ = −ωt. and

~r(t) ≈ ~r(0) +

∫ t

0

~u(rx(0), rz(0), τ)dτ

= ~r(0) +

∫ t

0

aω

sinh(kd)
[−cosh ζ0 sin ξτ x̂+ sinh ζ0 cos ξτ ẑ] dτ

= ~r(0)− a

sinh(kd)
[cosh ζ0 cos ξτ x̂+ sinh ζ0 sin ξτ ẑ]

t
0

= ~r(0) +
a cosh ζ0
sinh(kd)

x̂− acosh ζ0 cos ξ x̂+ sinh ζ0 sin ξ ẑ

sinh(kd)

The first part ~r(0) + a cosh ζ0
sinh(kd) x̂ is a constant so let us call it ~C. Then we

can write.

~r(t) ≈ ~C − acosh ζ0 cos ξ x̂+ sinh ζ0 sin ξ ẑ

sinh(kd)

If we let Rx = a cosh ζ0
sinh(kd) and Rz = a sinh ζ0

sinh(kd) we can write

~r(t) ≈ ~C −Rx cos ξ x̂−Rz sin ξ ẑ

which is an elipse about the center ~C.

. Problem 4.15

Integrate the velocity numerically in order to find the trajectory. To
make things easier do the deep water approximation for the velocity
field. The simulation should show what is called the Stokes drift veloc-
ity, that is the fact that the water has a net motion in the direction of
the wave travel. There are extensive suggestions for this problem in the
hints section. When the code is working run it for a range of values of
ka and compute the ratio of the drift velocity and phase velocity and
make a graph of this velocity ratio versus ka.
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. Problem 4.16

Consider the deep water limit d� λ of the velocity field.
(a) What is the velocity of the water in the trough of a wave?
(b) What is the velocity of the water at the peak of the wave?
(c) On what does the ratio of the velocity and phase velocity depend?

Theorem: Relationships for linear waves: kη � 1
Starting from the dispersion relation ω2 = gk tanh(kd) we find the
following.

vp =

√
g tanh(kd)

k

v∞ = lim
kd→∞

vp =

√
g

k
AND

vp
v∞

=
√

tanh(kd)

v0 = lim
kd→0

vp =
√
gd AND

vp
v0

=

√
tanh(kd)

kd
vg
vp

=
1

2
+

kd

sinh(2kd)

§ 4.14 Sanity check
We have been using the linearized boundary conditions. We have

not done a good job of justifying why this would be ok, nor do we have
a concrete way of deciding when it will not be ok. We should do that
now.

First let us review what we found in our linear approximation.

ω2 = gk tanh(kd)

η = −a sin ξ

φ =
aω

k

cosh ζ

sinh(kd)
cos ξ

∇φ = aω
−cosh ζ sin ξx̂+ sinh ζ cos ξẑ

sinh(kd)

|∇φ|2 = a2ω2 sinh2 ζ + sin2 ξ

sinh2(kd)

Now we want to see how far off the two BC’s are.[
∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

= −gη Dynamic[
∂φ

∂z
− ∂η

∂x

∂φ

∂x

]
z=η

=
∂η

∂t
Kinematic
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To make things a little easier to deal with we will instead work with

the two equations

1

ag

[
∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

= −η
a

Dynamic

1

aω

[
∂φ

∂z
− ∂η

∂x

∂φ

∂x

]
z=η

=
1

aω

∂η

∂t
Kinematic

. Problem 4.17

Compute the left hand side and the right hand side of the dynamic

boundary condition. Plot both sides as a function of ξ. Let d = λ/2.

Are the LHS and RHS the same? Repeat for ka = 0.001, 0.01, and 0.1.

Now do the same for the kinematic boundary condition.

§ 4.15 Pressure on the bottom

Using the 2D traveling wave velocity potential we evaluate the

pressure at the bottom surface, z = −d. We have

φ =
aω

k

cosh ζ

sinh(kd)
cos ξ

So we can use the dynamical equation ∂φ
∂t + 1

2 |∇φ|
2 + P

ρ + gz = 0 to

find the pressure. We notice first that ζ = kz+ kd so at z = −d we see

that ζ = 0.

∂φ

∂t
+ 1

2 |∇φ|
2 +

P

ρ
+ gz = 0

−→ ∂φ

∂t
+ 1

2 |∇φ|
2 + gz = −P

ρ

aω2

k

cosh ζ

sinh(kd)
sin ξ + 1

2a
2ω2 sinh2 ζ + sin2 ξ

sinh2(kd)
+ gz = −P

ρ

ag tanh(kd)
cosh ζ

sinh(kd)
sin ξ + 1

2ka
2g tanh(kd)

sinh2 ζ + sin2 ξ

sinh2(kd)
+ gz = −P

ρ

a
cosh ζ

cosh(kd)
sin ξ + 1

2ka
2 sinh2 ζ + sin2 ξ

cosh(kd) sinh(kd)
+ z = − P

ρg
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Now evaluating at z = −d we find

P

ρg
= d− a 1

cosh(kd)
sin ξ − 1

2ka
2 0 + sin2 ξ

cosh(kd) sinh(kd)

= d− a sin ξ

cosh(kd)

[
1 + 1

2

ka sin ξ

sinh(kd)

]
= d− −η

cosh(kd)

[
1 + 1

2

−kη
sinh(kd)

]
= d+

η

cosh(kd)

[
1− 1

2

kη

sinh(kd)

]
≈ d+

η

cosh(kd)
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5 Beyond linearization

§ 5.1 Deep water expansion
Here we note that even at a modest depth of d = λ

2 that e−2kd =
e−2π = 0.001867 is a small number. Thus we are lead to the usefulness
of the following expansion for the case that the depth is greater than
half the wavelength.

cosh(kz + kd)

sinh(kd)
=
ekz+kd + e−kz−kd

ekd − e−kd

=
ekz + e−kze−2kd

1− e−2kd

= (ekz + e−kze−2kd)(1 + e−2kd + e−4kd + · · ·)
So if we can ignore things of size e−2kd compared with 1 then we can

approximate cosh(kz+kd)
sinh(kd) ≈ ekz. You can do similarly for

Theorem: Cosh and Sinh deep water expansion

cosh(kz + kd)

sinh(kd)
= (ekz + e−kze−2kd)(1 + e−2kd + e−4kd + · · ·)

and
sinh(kz + kd)

sinh(kd)
= (ekz − e−kze−2kd)(1 + e−2kd + e−4kd + · · ·)

So if we have d > λ/2 we can approximate.

φ = a
ω

k
ekz cos ξ

§ 5.2 Traveling wave assumption: recasting BC’s in ξ
If we assume that the surface wave η(x, t) moves without changing

shape and that it moves with the same velocity as the disturbance
of the velocity potential then η is only a function of the combination
ξ = kx− ωt. Because of this

∂η

∂t
=
∂ξ

∂t

∂η

∂ξ
= −ω∂η

∂ξ

∂η

∂x
=
∂ξ

∂x

∂η

∂ξ
= k

∂η

∂ξ
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∂η

∂y
=
∂ξ

∂y

∂η

∂ξ
= 0

∂η

∂ξ

Substituting this into the kinematic BC
[
∂φ
∂z −

∂η
∂x

∂φ
∂x

]
z=η

= ∂η
∂t gives

us [
∂φ

∂z
− k∂η

∂ξ

∂φ

∂x

]
z=η

= −ω∂η
∂ξ[

k
∂φ

∂ζ
− k2 ∂η

∂ξ

∂φ

∂ξ

]
z=η

= −ω∂η
∂ξ

Theorem: Boundary Conditions: recast[
−ω∂φ

∂ξ
+ 1

2 |∇φ|
2

]
z=η

+ gη = 0 Dynamic[
k
∂φ

∂ζ
− k2 ∂η

∂ξ

∂φ

∂ξ

]
z=η

+ ω
∂η

∂ξ
= 0 Kinematic

It is important to note that once we have substituted z = η that
the boundary conditions only have the variable ξ remaining. This is
because where we had z before we now have η and η is a function of ξ.

So for example substituting φ = aωk
cosh ζ

sinh(kd) cos ξ into the kinematic

equation we find

sinh ζη
sinh(kd)

cos ξ + ka
cosh ζη

sinh(kd)
sin ξ

1

a

∂η

∂ξ
= −1

a

∂η

∂ξ

We see that this is only a function ξ.
Even so it looks a little difficult to solve, the η is buried inside of

the ζη inside a coth ζη and a sinh ζη. :/
It must be Approximation Time!

§ 5.3 Small amplitude limit of 1-D Traveling Wave: kη � 1
Let us look at cosh ζη. If η is small compared with the wavelength

λ = 2π
k we can make the following expansion.

cosh ζη = cosh(k(η + d)) = cosh(kd) + sinh(kd)kη +O
[
k2η2

]
Similarly

sinh ζη = sinh(k(η + d)) = sinh(kd) + cosh(kd)kη +O
[
k2η2

]
So if kη � 1 we can approximate

cosh ζη
sinh(kd)

≈ coth(kd) + kη
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sinh ζη
sinh(kd)

≈ 1 + tanh(kd)kη

so we can approximate for kη � 1 that

(1 + ka(coth(kd) + kη) sin ξ)
1

a

∂η

∂ξ
+ (1 + tanh(kd)kη) cos ξ = 0

Now recall that a is the amplitude of the motion near the surface
so a and η are of the same order. Thus the term kakη sin ξ is of order
(kη)2 and it is added to 1 so it must be ignored also since already
ignored order (kη)2 compared with 1. This leaves us with

(1 + ka coth(kd) sin ξ)
1

a

∂η

∂ξ
+ (1 + tanh(kd)kη) cos ξ = 0

or
1

a

∂η

∂ξ
= − (1 + tanh(kd)kη) cos ξ

1 + ka coth(kd) sin ξ

If we also ignore order kη in comparison with 1 then we have

1

a

∂η

∂ξ
= − cos ξ −→ η

a
= − sin ξ

Thus we have the zero order approximation.
η

a
= − sin ξ

φ = a
ω

k

cosh ζ

sinh(kd)
cos ξ

But we have not verified that the dynamic BC is ok.[
∂φ

∂t
+ 1

2 |∇φ|
2

]
z=η

= −gη

is satisfied. Let us try substituting and see what happens.[
−ω∂φ

∂ξ
+ 1

2

(
k
∂φ

∂ξ

)2

+ 1
2

(
k
∂φ

∂ζ

)2
]
z=η

= −gη

a
ω2

k

cosh ζη
sinh(kd)

sin ξ + a2ω2 cosh(2ζη)− cos(2ξ)

4 sinh2(kd)
= −gη

cosh ζη
sinh(kd)

sin ξ + ka
cosh(2ζη)− cos(2ξ)

4 sinh2(kd)
= −gk

ω2

η

a

(coth(kd) + kη) sin ξ + ka
cosh(2ζη)− cos(2ξ)

4 sinh2(kd)
= −gk

ω2

η

a

coth(kd) sin ξ = −gk
ω2

η

a

− sin ξ =
gk tanh(kd)

ω2

η

a
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So we see that this BC give the same results η
a = − sin ξ if again we

ignore kη in comparison with 1 and if gk tanh(kd)
ω2 = 1, that is if

ω2 = gk tanh(kd)

.

§ 5.4 Deep water limit of 1-D traveling wave: d > λ/2

No we take a different limiting approximation. In this case we
do not make assumptions about the amplitude of the waves but about
the depth of the water. Starting again with an exactly solution to to
∇2φ = 0

φ = a
ω

k

cosh ζ

sinh(kd)
cos ξ

we take the case that d > λ/2 −→ kd > π. Consider

cosh ζη
sinh(kd)

=
cosh(kd+ kη)

sinh(kd)
=
ekdekη + e−kde−kη

ekd − e−kd
=
ekη + e−2kde−kη

1− e−2kd

Now if kd > π is large then ε = e−2kd < 0.002. For this reason we are
lead to approximate

cosh ζη
sinh(kd)

= ekη
[
1 + e−2kd 1 + e−2kη

1− e−2kd

]
≈ ekη

Even the largest possible waves have |kη| < 0.6. Thus with kd > π we
have that the error term is

e−2kd 1 + e−2kη

1− e−2kd
< 0.0035

so we make an error of at most 0.3% and we can safely approximate
cosh ζη

sinh(kd) ≈ e
kη Thus in the deep water limit we have

φ =
aω

k
ekz cos ξ[

∂φ

∂z

]
z=η

= aωekη cos ξ[
∂φ

∂x

]
z=η

= −aωekη sin ξ[
∂φ

∂t

]
z=η

=
aω2

k
ekη sin ξ

Now let us consider the dynamic boundary condition again.
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[
∂φ

∂t
+ 1

2

(
∂φ

∂x

)2

+ 1
2

(
∂φ

∂z

)2
]
z=η

= −gη

a
ω2

k
ekη sin ξ + 1

2

(
aωekη sin ξ

)2
+ 1

2

(
aωekη cos ξ

)2
= −gη

a
ω2

k
ekη sin ξ + 1

2a
2ω2e2kη = −gη

ekη sin ξ + 1
2ka e

2kη = −gk
ω2

η

a
ω2

gk
ekη
(
sin ξ + 1

2ka e
kη
)

+
η

a
= 0

Now the kinematic BC [
∂φ

∂z
− ∂η

∂x

∂φ

∂x

]
z=η

=
∂η

∂t

ka
ω

k
ekη cos ξ + k2 ∂η

∂ξ
a
ω

k
ekη sin ξ = −ω∂η

∂ξ

ekη cos ξ + k ekη sin ξ
∂η

∂ξ
+

1

a

∂η

∂ξ
= 0

∂

∂ξ

[
ekη sin ξ +

η

a

]
= 0

ekη sin ξ +
η

a
= K

where K is a constant.

Theorem: Deep water BC’s for 1-D traveling wave
In the case that d > λ/2 we can approximate the top surface
boundary conditions for the form φ = aωk

cosh ζ
sinh(kd) cos ξ as

ω2

gk
ekη
(
sin ξ + 1

2ka e
kη
)

+
η

a
= 0 dynamic

ekη sin ξ +
η

a
= K kinematic

Deep water limit: amplitude expansion to order (ka)0

If we take the boundary conditions and ignore terms of order ka
compared with terms of order 1 then we have

ω2

gk
ekη sin ξ +

η

a
= 0 dynamic

ekη sin ξ +
η

a
= K kinematic
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But we also know that if ka is small we can approximate ekη = eka
η
a =

1 + kaηa +O
[
(ka)2

]
= 1 +O

[
(ka)1

]
. So since we are dropping terms

of order ka when added to terms or order 1 we can approximate the
BCs as

ω2

gk
sin ξ +

η

a
= 0 dynamic

sin ξ +
η

a
= K kinematic

These are the same thing if we pick K = 0 and ω2 = gk in which
case we get η = −a sin ξ. Which is the solution we go by using the
linearized BCs. So we see that the linearized BC’s have tossed terms
of order ka, and only gives the strictly correct solution in the case that
the amplitude is zero or very close to it.

Deep water limit to order (ka)1

Now we do the same thing but keep order ka and toss order (ka)2.
Let us see how this works out.

First we note that ekη ≈ 1 + kaηa , so that the above two equations
can be written to first order as follows.

ω2

gk
(1 + ka

η

a
)
(

sin ξ + 1
2ka(1 + ka

η

a
)
)

+
η

a
= 0 dynamic

(1 + ka
η

a
) sin ξ +

η

a
= K kinematic

Now tossing further (ka)2 terms we have

ω2

gk

(
sin ξ + ka

η

a
sin ξ + 1

2ka
)

+
η

a
= 0 dynamic

(1 + ka
η

a
) sin ξ +

η

a
= K kinematic

Rewriting slightly we have

ω2

gk

(
1 + ka

η

a

)
sin ξ +

η

a
= −ω

2

gk
1
2ka dynamic

(1 + ka
η

a
) sin ξ +

η

a
= K kinematic

So we see that the BC’s agree if we pick the constant to be K = − 1
2ka

and if we pick the frequency ω2 = gk. Solving for η
a we find

η

a
= −

sin ξ + 1
2ka

1 + ka sin ξ

This can be written in a slightly different form as follows which is
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not equal but equal to order (ka)2.

η

a
= −

sin ξ + 1
2ka

1 + ka sin ξ
+O

[
(ka)2

]
= − sin ξ − 1

2ka(1− 2 sin2 ξ) +O
[
(ka)2

]
= − sin ξ − 1

2ka cos 2ξ +O
[
(ka)2

]
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§ 5.5 Deep water limit with (ka)3 � 1

(1 + kη + 1
2k

2η2) sin ξ + 1
2ka(1 + 2kη) +

gk

ω2

η

a
= 0 dynamic

(1 + kη + 1
2k

2η2) sin ξ +
η

a
= K kinematic

or

1
2k

2a2 sin ξ
η2

a2
+

(
gk

ω2
+ ka sin ξ + k2a2

)
η

a
= − sin ξ − 1

2ka dynamic

1
2k

2a2 sin ξ
η2

a2
+ (1 + ka sin ξ)

η

a
= − sin ξ +K kinematic
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Which are consistent if we let the constant K = − 1
2ka and the fre-

quency be such that

gk

ω2
+ k2a2 = 1 −→ ω2 =

gk

1− k2a2

then the two BC’s are both

1
2k

2a2 sin ξ
η2

a2
+ (1 + ka sin ξ)

η

a
= − sin ξ − 1

2ka

Solving the quadratic gives

η

a
=

√
(1 + ka sin ξ)2 − 2k2a2 sin2 ξ − k3a3 sin ξ − (1 + ka sin ξ)

k2a2 sin ξ

which is a little messy looking, but if we recall that is is only good up
to order (ka)2 then we can do a power series expansion of the square
root and then we find that
η

a
= − sin ξ − 1

2ka(1− 2 sin2 ξ) +
k2a2

2
(sin ξ − 3 sin3 ξ) +O

[
(ka)3)

]
= − sin ξ − 1

2ka cos 2ξ +
k2a2

8
(−5 sin ξ + 3 sin 3ξ) +O

[
(ka)3)

]
= −

(
1 +

5

8
(ka)2

)
sin ξ − 1

2ka cos 2ξ +
5

8
(ka)2 sin 3ξ +O

[
(ka)3)

]
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. Problem 5.1

Check the accuracy of the the zero order, first order, and second order
approximations for the deep water case by evaluating the error in the
BCs. Take the BCs in the form

ω2

gk
ekη
[
sin ξ + 1

2ka e
kη
]

+
η

a
= 0 dynamic

−K + ekη sin ξ +
η

a
= 0 kinematic

and plot the LHS for all three orders on the same graph. Use ka = 0.2.
How close are they to zero?
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(a) The zero order solution: K = 0, ω2

gk = 1, and η
a = − sin ξ.

The first order solution: K = − 1
2ka, ω2

gk = 1, and

η

a
= −

sin ξ + 1
2ka

1 + ka sin ξ
.

The second order solution: K = − 1
2ka, ω2

gk = 1
1−k2a2 , and

η

a
= − sin ξ − 1

2ka(1− 2 sin2 ξ) + 1
2k

2a2(sin ξ − 3 sin3 ξ).

(b) In the second order approximation we had the alternate expression

η

a
= −

(1 + ka sin ξ)−
√

(1 + ka sin ξ)2 − 2k2a2 sin2 ξ − k3a3 sin ξ

k2a2 sin ξ
.

What could cause problems in evaluating numerically this expression?

§ 5.6 Try the same without deep water limit

We had the kinetic BC
sinh ζη

sinh(kd)
cos ξ + ka

cosh ζη
sinh(kd)

sin ξ
1

a

∂η

∂ξ
+

1

a

∂η

∂ξ
= 0

We now notice that the first two terms together is a total derivative.
Thus we can write

∂

∂ξ

[
sinh ζη

sinh(kd)
sin ξ

]
+

1

a

∂η

∂ξ
= 0

or
∂

∂ξ

[
sinh ζη

sinh(kd)
sin ξ +

η

a

]
= 0

and thus
sinh ζη

sinh(kd)
sin ξ +

η

a
= K

where K is a constant.

While the dynamic BC is[
−ω∂φ

∂ξ
+

1

2
|∇φ|2

]
z=η

+ gη = 0

aω2

k

cosh ζη
sinh(kd)

sin ξ +
a2ω2

2

sinh2 ζη + sin2 ξ

sinh2(kd)
+ gη = 0

cosh ζη
sinh(kd)

sin ξ +
ka

2

sinh2 ζη + sin2 ξ

sinh2(kd)
+
gk

ω2

η

a
= 0

So our BC’s are
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Theorem: BC’s for separable velocity potential

cosh ζη
sinh(kd)

sin ξ +
ka

2

sinh2 ζη + sin2 ξ

sinh2(kd)
+
gk

ω2

η

a
= 0 dynamic

sinh ζη
sinh(kd)

sin ξ +
η

a
= K kinetic

Now we expand the hyperbolic functions in powers of kη,

cosh ζη
sinh kd

=
ekη + εe−kη

1− ε

=

∑
n

(kη)n

n! + ε
∑
n

(−kη)n

n!

1− ε

=

∑even
n

(kη)n

n! +
∑odd
n

(kη)n

n! + ε
∑even
n

(kη)n

n! − ε
∑odd
n

(kη)n

n!

1− ε

=
(1 + ε)

∑even
n

(kη)n

n! + (1− ε)
∑odd
n

(kη)n

n!

1− ε

=
1 + ε

1− ε

even∑
n

(kη)n

n!
+

odd∑
n

(kη)n

n!

= coth(kd)

even∑
n

(kη)n

n!
+

odd∑
n

(kη)n

n!

sinh ζη
sinh kd

=
ekη − εe−kη

1− ε

=
(1− ε)

∑even
n

(kη)n

n! + (1 + ε)
∑odd
n

(kη)n

n!

1− ε

=

even∑
n

(kη)n

n!
+ coth(kd)

odd∑
n

(kη)n

n!

Now let us use this expansion to get the second order in ka expansion

of the BC’s. We will use the notation that C = coth(kd), T = tanh(kd)

and α = ka and µ = η
a . We start with the dynamic BC.
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[
C + αµ+

C

2
α2µ2

]
sin ξ +

α

2

[
1 + 2Cαµ+

sin2 ξ

sinh2(kd)

]
+
gk

ω2
µ = 0(

C sin ξ +
α

2
+
α

2

sin2 ξ

sinh2(kd)

)
+

(
gk

ω2
+ α sin ξ + Cα2

)
µ+

C

2
α2 sin ξµ2 = 0(

sin ξ +
α

2
T + α

sin2 ξ

sinh(2kd)

)
+

(
gk

ω2
T + α2 + αT sin ξ

)
µ+

α2

2
sin ξµ2 = 0

Now the kinetic BC
sinh ζη

sinh(kd) sin ξ + η
a = K becomes(

1 + Cαµ+
1

2
α2µ2

)
sin ξ + µ = K

or

(sin ξ −K) + (1 + αC sin ξ)µ+
α2

2
sin ξ µ2 = 0

These two are only equivalent if we ignore both the α and the α2 terms,
in which case we have that they are equivalent if ω2 = gk tanh(kd) and
K = 0.

They are exactly equal if we let kd→∞ in which case C = T = 1,
but this is our second order deep water solution.

It is tempting to get the first order finite depth effect, so let us
see if this goes anywhere. Let ε = e−2kd. Note that if kd > 2.3 then
ε < 0.01, so it doesn’t take much depth to make ε small. To first order
in ε we have that C = 1 + 2ε and T = 1− 2ε, while 1

sinh(2kd) = 2ε.(
sin ξ +

α

2
(1− 2ε) + 2αε sin2 ξ

)
+

(
gk

ω2
(1− 2ε) + α2 + α(1− 2ε) sin ξ

)
µ+

α2

2
sin ξ µ2 = 0

and

(sin ξ −K) + (1 + α(1 + 2ε) sin ξ)µ+
α2

2
sin ξ µ2 = 0

Still no good. :(
We could try replacing the sin2 ξ term with it’s average 1

2 and just
ignoring the αε sin ξ µ terms (which have opposite sign), but this takes
us almost back to the deep water limit, but with the gk

ω2 term multiplied
by (1− 2ε) = tanh(kd).(

sin ξ +
α

2

)
+

(
gk

ω2
(1− 2ε) + α2 + α sin ξ

)
µ+

α2

2
sin ξ µ2 = 0

(sin ξ −K) + (1 + α sin ξ)µ+
α2

2
sin ξ µ2 = 0
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I guess it does give us an altered dispersion relation

ω2 = gk(1− 2ε) + (ka)2 = gk tanh(kd) + (ka)2

which is a hybrid of the deep water ω2 = gk+(ka)2 and small amplitude
ω2 = gk tanh(kd)2 dispersion relations. Though it is not clear if this is
closer to the truth, since we have truncated things in an uncontrolled
way.
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6 More Kinsman problems

§ 6.1 Kinsman section 3.4

Wave potential energy: V

If we define the potential energy of the water to be zero when
the sea is flat then the potential energy of a surface area dA with a
disturbance η to the surface is

dU = dm g zcm

= ρ dV g zcm

= ρ dV g
η

2

= ρ η dA g
η

2

=
ρg

2
η2dA

So the energy over an area A is

U =

∫
A

dA
ρg

2
η2

and the potential energy density is

V =
U

A
=

1

A

∫
A

dA
ρg

2
η2 =

ρg

2

1

A

∫
A

dA η2

But 1
A

∫
A
dA η2 is the mean of η2 over the area so

V =
ρg

2
〈η2〉

Theorem: Potential energy density

V =
U

A
= 1

2ρg〈η
2〉

In the case that η is sinusoidal with amplitude a we know that
〈η2〉 = 1

2a
2 and then

V =
ρga2

4
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Wave kinetic energy: T

If we take the deep water limit we know that φ = aω
k e

kz cos ξ
and thus that the magnitude of the velocity in the water is constant
u = aωekz that does not change over time. We can then compute the
total kinetic energy in a column of water from the bottom up to the
surface as

T =

∫
dT

=

∫
1
2dm u2

=

∫
1
2ρdV u2

= ρ

∫ 0

−∞

1
2Adz u

2

= 1
2Aρa

2ω2

∫ 0

−∞
dz e2kz

= 1
2Aρa

2ω2 1

2k

= A
ρga2

4

Thus the kinetic energy density is

T =
T

A
=
ρga2

4
The same as the potential energy density!

Theorem: Mechanical energy density
The total mechanical energy density is then

E = T + V =
ρga2

2
= ρg〈η2〉

Wave power

The wave power P through and area A with it’s normal in the x̂
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direction is

P =

∫
d~F · ~u

=

∫
P ~dA · ~u

=

∫
P dA x̂ · ~u

=

∫
dA P ux

The time average power will be

〈P〉t =
1

T

∫ T

0

dt P

=
1

T

∫ T

0

dt

∫
dA uxP

=

∫
dA

1

T

∫ T

0

dt uxP

We get the pressure from ∂φ
∂t + 1

2 |∇φ|
2 + gz + P

ρ = 0 which along with

φ = aω
k e

kz cos ξ and ω2

k = g gives

P = −ρga ekz sin ξ − 1
2ρa

2ω2e2kz − ρgz
ux = −aωekz sin ξ

thus

1

T

∫ T

0

dt uxP =
1

T

∫ T

0

dt aωekz sin ξ(ρga ekz sin ξ + 1
2ρa

2ω2e2kz + ρgz)

= aωekzρga ekz
1

T

∫ T

0

dt sin2 ξ

+ aωekz( 1
2ρa

2ω2e2kz + ρgz)
1

T

∫ T

0

dt sin ξ

= aωekzρga ekz
1

2
+ aωekz( 1

2ρa
2ω2e2kz + ρgz) 0

=
ρga2

2
ωe2kz

= Eωe2kz
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Now we can go back to getting the time average power.

〈P〉t =

∫
dA

1

T

∫ T

0

dt uxP

=

∫
dA E ωe2kz

= E ω

∫
dA e2kz

Let us find the power through a strip w wide and going from the bottom
up to the surface. Then we can write

〈P〉t = E ω

∫
dA e2kz

= E ω

∫ w

0

dy

∫ 0

−∞
dz e2kz

= E ω w

∫ 0

−∞
dz e2kz

= w E
ω

2k

[
e2kz

]0
−∞

= w E
ω

2k

= w E vg

and

〈P〉t
w

= E vg

So we see that the energy of the wave moves with the group velocity
not the phase velocity!

. Problem 6.1

Compute the change in the potential energy of the chunck of dark blue
water shown in the diagram below, as if moves from what will become
the trough of a wave to what becomes the peak of the wave. Show that
this result is the same as the energy we derived in class (and Kinsman
does in the text) for the potential energy.
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. Problem 6.2

Suppose that you have designed a panel that can take the incoming
energy of the wave motion and generate power with it. Suppose that it
has an efficiency of α, that is α = power generated

wave power the ratio of the power
generated and the wave power striking the panel. This panel is placed
vertically in the water with its top at the surface, and oriented so that
the normal to the face is parallel to the velocity of the waves travel.
The panel has a width w and a length ` down into the water, and a
negligible thickness.
(a) Compute the wave power striking the panel, in the deep water limit.
(b) How does the power change with the amplitude of the wave? For
the remainder of this problem assume an amplitude of 1 meter.
(c) Graph the wave power divided by the width w, versus the length `
for ` from 0 to 100 meters for periods of 5, 10, 15, and 20 seconds.
(d) Graph the wave power divided by panel area w`, versus the length
` for ` from 0 to 100 meters for periods of 5, 10, 15, and 20 seconds.
(e) If you were limited by the total area of panel would it be better to
make a wide and shallow panel or a narrow and deep panel?
(f) Suppose that you have a panel that is one meter by one meter, what
efficiency would you need to run an 80 watt laptop computer on a day
with a swell of 0.5 meter amplitude?
(g) Compare this with the power generated from a solar panel of the
same area. Sunlight has an intensity of about 1000 watts per square
meter, but the sun is not always up and not always normal to the panel
so the average power is reduced by a at least a factor of 1

π . In addition
solar panels are at best 37 % efficient in converting the solar radiation
into electrical power.

§ 6.2 Kinsman chapter 4

. Problem 6.3

Write a program super(N,kbar,dk) to compute the sum of small am-
plitude waves η(x, t) described below, and graph the wave at sequential
times in order to see the time evolution of the wave.

η =

N∑
n=0

an cos(knx− ωnt)
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with

kn = k̄ +

(
n

N
− 1

2

)
δk

ωn =
√
gkn

an = 0.54− 0.46 cos(2πn/N)

(a) Add a moving dot to the graph that has position x = 1
2

√
g/k̄ t.

Discuss the movement of this dot compared with the movement of the
wave.
(b) Consider the following parameters

k̄ = 0.01

δk = 0.0005

this will give you a range of periods from about 19.5s to 20.5s. Now
see what happens as you increase the number of terms N .

Sum of a continuum of waves
In the previous problem we computed the sum

η =
1

N

N∑
n=0

an cos(knx− ωnt)

We add the scaling factor 1/N here to make the sum more invariant as
we increase N .

Let us generalize this to an integral. First we note that the change
from one k to the next is dk = δk

N , so we can write

η =
1

N

N∑
n=0

an cos(knx− ωnt) =
1

δk

N∑
n=0

an cos(knx− ωnt)dk

and

η = lim
N→∞

1

N

N∑
n=0

an cos(knx− ωnt)

= lim
dk→0

1

δk

N∑
n=0

an cos(knx− ωnt)dk

=
1

δk

∫
a cos(kx− ωt)dk

where a and ω are functions of k.

η =
1

δk

∫
a cos(kx− ωt) dk = Re

[∫
aei(kx−ωt)

dk

δk

]
= Re[ψ]

Let us suppose a(k) is negligibly small except for k near k̄, that is
a(k) ≈ 0 for k such that |k − k̄| > δk for some small δk. In that case
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we can approximate

ω(k) ≈ ω(k̄) +
∂ω

∂k

∣∣∣∣
k=k̄

(k − k̄)

Let us define ω̄ = ω(k̄) and vg = ∂ω
∂k

∣∣
k=k̄

. Then we can write

ψ =

∫ k̄+δk/2

k̄−δk/2
aei(kx−ωt)

dk

δk

= ei(k̄x−ω̄t)
∫ k̄+δk/2

k̄−δk/2
aei((k−k̄)x−(ω−ω̄)t) dk

δk

= ei(k̄x−ω̄t)
∫ k̄+δk/2

k̄−δk/2
aei((k−k̄)x−vg(k−k̄)t) dk

δk

= ei(k̄x−ω̄t)
∫ k̄+δk/2

k̄−δk/2
aei(k−k̄)(x−vgt) dk

δk

= ei(k̄x−ω̄t)
∫ 1/2

−1/2

a(κ)eiκξdκ

= ei(k̄x−ω̄t)
√

2πA(ξ)

with κ = k−k̄
δk and ξ = δk(x− vgt), and where A is the inverse Fourier

transform of a. Assuming that A is real then the real part of ψ is

η = cos(k̄x− ω̄t)
√

2πA(ξ)

But since ξ = δk(x − vgt) we see that the envelope A(ξ) moves with

the group velocity, and that the oscillation cos(k̄x − ω̄t) is modulated

by the envelope.

As a specific example let us consider the previous homework prob-

lem again.

kn = k̄ +

(
n

N
− 1

2

)
δk −→ κ =

k − k̄
δk

=
n

N
− 1

2

−→ n

N
= κ+ 1

2 −→ 2π
n

N
= 2πκ+ π

−→ a = 0.54− 0.46 cos(2πn/N)

= 0.54− 0.46 cos(2πκ+ π)

= 0.54 + 0.46 cos(2πκ)

= 0.54 + 0.23ei2πκ + 0.23e−i2πκ
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and so∫
a(κ)eiκξdκ =

∫ 1/2

−1/2

[
0.54 + 0.23ei2πκ + 0.23e−i2πκ

]
eiκξdκ

=

∫ 1/2

−1/2

[
0.54eiκξ + 0.23eiκ(ξ+2π) + 0.23eiκ(ξ−2π)

]
dκ

These are all of the form∫ 1/2

−1/2

eiκbdκ =
ei
b
2 − e−i b2
ib

=
2i sin b

2

ib
=

sin b
2

b
2

= sinc

(
b

2

)
The sinc function is graphed below.
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∫
a(κ)eiκξdκ = 0.54 sinc

(
ξ

2

)
+ 0.23 sinc

(
ξ + 2π

2

)
+ 0.23 sinc

(
ξ − 2π

2

)
= 0.54 sinc

(
ξ

2

)
+ 0.23 sinc

(
ξ

2
+ π

)
+ 0.23 sinc

(
ξ

2
− π

)

≡ η0(ξ) + η+(ξ) + η−(ξ)
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Now we can get the final waveform η.

η = Re

[∫
aei(kx−ωt) dk

]
= Re

[
ei(k̄x−ω̄t)

∫
a(κ)eiκξdκ

]
= cos(k̄x− ω̄t)

∫
a(κ)eiκξdκ

= cos(k̄x− ω̄t)
[
0.54 sinc

(
ξ

2

)
+ 0.23 sinc

(
ξ

2
+ π

)
+ 0.23 sinc

(
ξ

2
− π

)]
= cos(k̄x− ω̄t)

[
η0(ξ) + η+(ξ) + η−(ξ)

]

-5-4-3-2-1 0 1 2 3 4 5
-0.2

0
0.2
0.4

-5-4-3-2-1 0 1 2 3 4 5
-0.2

0
0.2
0.4 +

-

-5-4-3-2-1 0 1 2 3 4 5
-0.2

0
0.2
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0
0.2
0.4

. Problem 6.4

Consider the wave

η(x, t) =
1

δk

∫
a(k) cos(kx− ωt) dk

with the wave number amplitude

a(k) =

{
a0 if |k − k̄| < δk/2
0 otherwise

Graph η versus ξ = δk(x− vgt).

. Problem 6.5
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Consider the wave

η(x, t) =

∫ ∞
−∞

a(k) cos(kx− ωt) dk

with a gaussian wave number amplitude

a(k) =
1√

2πσ2
k

e
− 1

2 ( k−k̄σk
)2

Graph η versus ξ = σk(x − vgt). Show that the envelope of η(ξ) is a
gaussian too.

§ 6.3 Holthuijsen section 3.1 through 3.4

. Problem 6.6

Read sections 3.1 through 3.4.

. Problem 6.7

Take the buoy data provided and compute the wave height H and
period T0 for all of the waves in the time series. Break the data into
half hour long segments.
(a) Plot the histogram of wave heights for each half hour. Mark Hrms,
H̄, H1/3, and H1/10 on the histogram.
(b) Plot the histogram of periods for each half hour. Mark Trms, T̄0,
T1/3, and T1/10 on the histogram.

§ 6.4 Holthuijsen section 3.5

Theorem: Discrete Fourier Transform
Suppose you have a signal η(t) sampled at times tk = k

fs
where fs is

the sample rate, so that we have the sequence of values ηk = η(tk).
The sequences Hn is defined by the following.

ηk =

N−1∑
n=0

Hne
2πnk/N

Hn =

N−1∑
k=0

ηke
−2πnk/N =

N/2∑
k=1−N/2

ηke
−2πnk/N

The sequence Hn is called the Discrete Fourier Transform (DFT)
of the sequence ηk, and is associated with the frequencies fn = n fsN
since

fntk = n
fs
N

k

fs
=
nk

N
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Theorem: Parceval’s Theorem
If Hn is the DFT of the sequence ηk then

N−1∑
k=0

|ηk|2 =
1

N

N−1∑
n=0

|Hn|2

We can use the above to write the wave power in terms of Hn.
Recall that the wave power was proportional to 〈η2〉 the mean value
of η2. Suppose that we have recorded N samples ηk = η(tk) with a
sample rate of fs, that is tk = k/fs.

〈η2〉 =
1

N

N−1∑
k=0

η2
k =

1

N

N−1∑
k=0

|ηk|2

=
1

N

1

N

N−1∑
n=0

|Hn|2 by Parceval′s theorem

=

N−1∑
n=0

∣∣∣∣Hn

N

∣∣∣∣2

= 2

N/2−1∑
n=1

∣∣∣∣Hn

N

∣∣∣∣2 +

∣∣∣∣HN/2

N

∣∣∣∣2 used H0 = 0 since 〈η〉 = 0

= 2

N/2−1∑
n=1

∣∣∣∣Hn

N

∣∣∣∣2 assuming HN/2 = 0

=

N/2−1∑
n=1

2 |Hn|2

N2∆f
∆f

=

N/2−1∑
n=1

2 |Hn|2

Nfs
∆f

Because of this result we are lead to the following definition of the
variance density spectrum E(fn).

E(fn) =

⌈
2 |Hn|2

Nfs

⌋
=

2

Nfs

⌈
|Hn|2

⌋
where the symbol dblobc is a notation for the ensemble mean or ex-
pectation value of blob. In this case the ensemble is a collection of
sequences hk and so the DFT gives an ensemble of Hn, so

⌈
|Hn|2

⌋
is

notation for the mean of |Hn|2 over this ensemble. The idea is that
E(f) should be independent of our sample rate and the number of
samples taken, that is independent of the method of measurement.
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The textbook uses the notation E{blob} for the expectation value

of blob which seems confusing since E already has a meaning. Thus

were will do the following

E{blob} =⇒ dblobc
I hope that this makes things more clear.

We can also express the variance density spectrum in terms of the

amplitudes an of the cosine representation of the surface

ηk =

N/2−1∑
n=1

an cos(2πfntk + αn)

=

N/2−1∑
n=1

an cos(2πnk/N + αn)

=

N
2 −1∑
n=1

an
2
ei2πnk/Neiαn +

N
2 −1∑
n=1

an
2
e−i2πnk/Ne−iαn

=

N
2 −1∑
n=1

bne
i2πnk/N +

N
2 −1∑
n=1

b∗ne
−i2πnk/N

with bn = an
2 e

iαn . These bn are just defined for the positive values of

n. Let us define b−n = b∗n then we can write

ηk =

N
2 −1∑
n=1

bne
i2πnk/N +

N
2 −1∑
n=1

b−ne
i2π(−n)k/N

=

N
2 −1∑
n=1

bne
i2πnk/N +

−N2 +1∑
n=−1

bne
i2πnk/N

=

N
2 −1∑
n=1

bne
i2πnk/N +

1−N2∑
n=−1

bne
i2πnk/N

=

N/2−1∑
n=1−N2

bne
i2πnk/N

with b0 = 0.

Comparing this with

ηk =
1

N

N/2∑
k=1−N/2

Hne
2πnk/N
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We see that bn = 1
NHn Thus an

2 e
iαn = 1

NHn and so

Hn = N
an
2
eiαn

and

|Hn| = N
an
2

and so

E(fn) =

⌈
2 |Hn|2

Nfs

⌋
=

⌈
Na2

n

2fs

⌋
=

⌈
a2
n

2∆f

⌋
. Problem 6.8

Using the same buoy data from March 2.
(a) Compute and plot E(fn) for each half hour of data.
(b) Compute the mean of η2 directly from the data for each half hour.
Also compute

∑
nE(fn)∆f for each half hour. Graph both versus the

“group” number (which half hour). Are they the same?

§ 6.5 Characterizing the variation in E(f): LH ??

We have defined E(fn) in terms of the ensemble average of
a2
n

2∆f .

would like to understand how the individual values of
a2
n

2∆f vary about
the ensemble average. This section will investigate this distribution.

Consider one component of the wave ηn = an cos(2πfnt+φn) and
think that we could have instead written

ηn = Ax cos(2πfnt) +Ay sin(2πfnt)

There is reason to believe that since the sin and cos function are inde-
pendent that the coefficients Ax and Ay will be independent random
variables with a gaussian distribution. Let us assume that this is so
and see what happens. Thus suppose that the probability density for
Ax is

p(Ax) =
1√
2πσ

e−A
2
x/2σ

2

AND p(Ay) =
1√
2πσ

e−A
2
y/2σ

2

where σ is the standard deviation of the distribution for Ax and Ay
both. So the joint probability for getting the pair of numbers (Ax, Ay)
is

p(Ax, Ay) = p(Ax)p(Ay) =
1

2πσ2
e−(A2

x+A2
y)/2σ2

Now if think of the point (Ax, Ay) in a 2-D plane then we could just
as well have written the point in terms polar coordinates (A, θ), and
where Ax = A cos θ and Ay = A sin θ and thus

ηn = A cos θ cos(2πfnt) +A sin θ sin(2πfnt) = A cos(2πfnt− θ)



72 More Kinsman problems 6.5

Comparing this with ηn = an cos(2πfnt+ φn), we see that our A = an
and −θ = φn and the distribution of (an, φn) is the distribution of
(A,−θ). The first thing to notice is that the probability density does
not depend on θ, and thus it does not depend on φn.

p(Ax, Ay) =
1

2πσ2
e−(A2

x+A2
y)/2σ2

=
1

2πσ2
e−A

2/2σ2

=
1

2πσ2
e−a

2
n/2σ

2

We can take our infinitesimal area element in the (Ax, Ay) plane as

dAx dAy = 2πA dA = 2πan dan

Thus

p(Ax, Ay)dAx dAy =
1

2πσ2
e−a

2
n/2σ

2

2πan dan =
1

σ2
aNe

−a2
n/2σ

2

dan

Thus we see that the distribution for A and thus an is

p(an) =
1

σ2
n

ane
−a2

n/2σ
2
n

This distribution is a Rayleigh Distribution.

Now since E(fn) =
⌈
a2
n

2∆f

⌋
what we would really like is the distri-

bution of εn =
a2
n

2∆f . First we note that dεn = 1
∆f andan, Thus

p(an)dan =
1

σ2
n

ane
−a2

n/2σ
2
ndan =

∆f

σ2
n

e−∆fεn/σ
2
ndεn

So evidently the distribution in εn is

p(εn) =
∆f

σ2
n

e−∆fεn/σ
2
n

which is an exponential distribution.

. Problem 6.9

Show that the ensemble mean of the Rayleigh distribution is danc =√
π
2σn, and that the Rayleigh distribution can be written in terms of

the mean µ = danc as

p(an) =
π

2µ2
ane
−πa2

n/4µ
2

. Problem 6.10

Show that E(fn) = σ2
n/∆f , and that the distribution of εn can be

written as

p(εn) =
1

En
e−εn/En

where En = E(fn)

. Problem 6.11

Notice that if we let u = εn
En

then p(εn)dεn = e−udu, thus u has the

probability density p(u) = e−u. Using the March 2 buoy data compute
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the εn for n such that fn = 0.07Hz (this is near the peak). Make an
estimate of the mean En for each 30 minute section and use this to
compute u. Pool all the data together and make a histogram of the
data. Set the histogram so that is displays the probability density. On
top of the histogram plot e−u.

. Problem 6.12

Consider an exponential distribution p(x) = 1
µe
−x/µ where µ is the

expectation value of x, and where x goes from zero to ∞. Find the
standard deviation of x.

Theorem: Variance theorem
Suppose that we have a set of random variables xn with means µn
and standard deviations σn. Then x =

∑
n xn is also a random

variable and its mean is µ =
∑
n µn and the standard deviation σ

is σ =
√∑

n σ
2
n.

. Problem 6.13

Using the theorem above show that if you take N samples of a random
variable x with mean µ and standard deviation σ and compute the
mean of these N random variables, M = 1

N

∑
n xn, then dMc = µ

and show that the standard deviation of M is σ/
√
N . Recall that for

one half hour of buoy data we took the mean of 18 measurements to
compute En. What is the uncertainty in this mean?

. Problem 6.14

Let us investigate the above result more numerically, since the data we
can get from the buoy’s is not really enough to provide a clear picture
of the limit. Let us suppose that x is exponentially distributed with
a mean of a then the probability density is p(x) = 1

ae
−x/a. We can

generate an N by M array of such random numbers by the code
x = -a*log(rand(N,M))

You can then by taking the mean of the columns of this array create
a vector of M values. These values are the mean of N of the random
values of x. Let us refer to these means as 〈x〉N . Do this for N = 18
and M = 100000.
(a) Plot a histogram of these means.
(b) Compute the mean and standard deviation of the M values of 〈x〉N .
(c) Do the numerically computed mean and standard deviation agree
with the theoretical values?
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7 Wave Statistics
§ 7.1 Holthuijsen Chapter 4

. Problem 7.1

Check the applicability of equations 4.2.1 and 4.2.2 for the March 2
buoy data that you have.

Hint for equation 4.2.1: If we scale η by
√
m0, that is let u =

η/
√
m0 be the scaled η, then the theoretical prediction for the pdf

of u is that p(u) =
√

1
2π e
−u2/2, which is independent of m0. This

implies that the probability density of the scaled η will not shift with
the changing sea state. Thus if you compute m0 for each half hour and
compute u for this half hour then you can pool all the u’s for the full
day and create one histogram for the entire day.

Hint for equation 4.2.2: We want to verify equation 4.2.2 which is,

T̄η =

√
m0

m2
eη

2/2m0

which can be recast as

2m0 log

(
T̄η

√
m2

m0

)
= η2

or

m0 log

(
T̄ 2
η

m2

m0

)
= η2

So compute T̄η, m0, m2 for each half hour segment and then compute

the Υ(η) = m0 log
(
T̄ 2
η
m2

m0

)
for each half hour segment . Do this for a

range of values of η from 0 to 1.6 and then pool all the data for all of
the half hour segments and see if Υ(η) is equal to η2.

. Problem 7.2

Use the March 2 buoy data to see if Hm0
, as defined in equation 4.2.24,

gives a good estimate of H1/3. Recall that you already have a program
that computes H1/3. Make a graph like figure 4.11 from the textbook.

§ 7.2 Holthuijsen Chapter 6

Theorem: Pierson-Moskowitz Spectral Density
The following function has been used to model the spectral density.

EPM(f) = αPM
g2

(2π)4f5
e
− 5

4

(
fPM
f

)4
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. Problem 7.3

Write αPM in terms of
⌈
η2
⌋
. Rewrite the Pierson-Moskowitz spectral

density in with this expression of αPM in terms of
⌈
η2
⌋
. There are hints

for this problem.

. Problem 7.4

Let fp be the value of the frequency that maximizes the Pierson-
Moskowitz spectral density. What is fp? Let u = f/fp and write
the spectral density in terms of u.

. Problem 7.5

Check to see if the Pierson-Moskowitz spectral density fits the buoy
data for March 2 and March 7. The results of the previous two problems
will help you estimate the constants αPM and fPM from the observed
fp and

⌈
η2
⌋
.

. Problem 7.6

Check to see if the JONSWAP spectral density fits the buoy data for
March 2, 6 and 7.

. Problem 7.7

Let there be two waves with different wave vectors, ~k1 and ~k2 on the
same surface.

ψ = 1
2 cos(~k1 · ~r − ω1t) + 1

2 cos(~k2 · ~r − ω2t)

We will assume the deep water limit so that ω2
1 = gk1 and ω2

2 = gk2.
We can rewrite the above as

ψ = cos(~k− · ~r − ω−t) cos(~k+ · ~r − ω+t)

with

~k± =
~k1 ± ~k2

2
AND ω± =

ω1 ± ω2

2
Is it possible for ω2

+ = gk+?

. Problem 7.8

Now consider four wave mixing. In this case we have the resonance
condition that

~k1 + ~k2 = ~k3 + ~k4 AND ω1 + ω2 = ω3 + ω4

for the energy to be transferred from one component to another. For
each of the components ω2

n = gkn. Define z = ω2

ω1
, x = ω3

ω1
, and y = ω4

ω1
,

and let α be the cosine of the angle between ~k1 and ~k2 and let the β be
the cosine of the angle between ~k3 and ~k4. Write out the two conditions(
~k1 + ~k2

)
·
(
~k1 + ~k2

)
=
(
~k3 + ~k4

)
·
(
~k3 + ~k4

)
AND ω1 +ω2 = ω3 +ω4

in terms of x, y, z, α, β. What is dimension of the space of solutions to
these two conditions. For example the dimension of the space defined
by x2 + y2 + z2 = 1 is 2, since it is a surface in a 3-D space.
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8 Random Stu�
§ 8.1 Hyperbolic Functions

Definitions

coshx ≡ ex + e−x

2

sinhx ≡ ex − e−x

2

tanhx ≡ ex − e−x

ex + e−x
=

sinhx

coshx

cothx ≡ ex + e−x

ex − e−x
=

coshx

sinhx

Identities

cosh2 x = 1
2 [cosh(2x) + 1]

sinh2 x = 1
2 [cosh(2x)− 1]

cosh2 x− sinh2 x = 1

cosh2 x+ sinh2 x = cosh(2x)

coshx sinhx = 1
2 sinh 2x

Derivatives

d

dx
coshx = sinhx

d

dx
sinhx = coshx

d

dx
tanhx =

1

cosh2 x
= 1− tanh2 x

Expansions
For |x| < 1

cosh(x) = 1 +
x2

2!
+
x4

4!
+ · · ·

sinh(x) = x+
x3

3!
+
x5

5!
+ · · ·

tanh(x) = x− 1

3
x3 +

2

15
x5 +O

[
x7
]
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For d > 0 and where we have defined ε = e−2d.

tanh(d) = 1− 2ε+ 2ε2 − 2ε3 + 2ε4 − 2ε5 + · · ·
coth(d) = 1 + 2ε+ 2ε2 + 2ε3 + 2ε4 + 2ε5 + · · ·

cosh(d+ z)

sinh(d)
= (ez + ε e−z)(1 + ε+ ε2 + ε3 + · · ·)

For z < 1

cosh(d+ z)

sinh(d)
= coth(d) + z + coth(d)

z2

2!
+
z3

3!
+ coth(d)

z4

4!
+ · · ·

sinh(d+ z)

sinh(d)
= 1 + coth(d) z +

z2

2!
+ coth(d)

z3

3!
+
z4

4!
+ · · ·
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A Hints

2.1 Use the definition of pressure. 1.6×105Pa,117.0×105Pa

2.2 Compare the pressure created by the elephant with the pressure
created by your lungs. Yes

2.3 The pressure in your lungs will be the same as the pressure in the
air above the water, and thus it will be the same as the pressure in the
water at the surface. 5.2m

2.4 What is the acceleration of the water? Draw a free body diagram
for the blob of water. Note that the force on the top and bottom is due
to the pressure on the top and bottom.

2.5 The net force is due to pressure is the pressure difference times
the area. 2.23×105N

2.6 Use ∆P = −ρg∆y. −1.48×104Pa,−1.18×107Pa

2.7 Use ∆P = −ρg∆y. The difference in pressure between the out-
side and inside of the box will be the same as the difference in pressure
between the bottom of the sea and the surface of the sea.

4.0×104N,6.0×104N,1.2×105N

2.8 Use ∆P = −ρg∆y. 490Pa

2.9 The volume rate of flow is dV
dt = Av. 2.2m3/s,0.68m

2.10 Use projectile motion to find the velocity at the nozzle from the
trajectory of the water. Find the volume rate of flow from this velocity.
From the volume rate of flow find the time. 6.3hours

2.11 The lift is due to the pressure difference between the upper and
lower surfaces of the wing. Find the pressure difference from this.
Use Bernoulli’s equation to relate this pressure difference to the speed.

302.6m
s

2.12 Use the equation of continuity and Bernoulli’s equation.
1.45×10−3m3/s

2.13 The lift on each “wing” is perpendicular it’s surface.

2.14 Use Bernoulli’s equation. 6.0×104N

2.15 Use the continuity equation and Bernoulli’s equation. 480Pa

2.16 Ask Bernoulli for help.

3.5 If Hn is the amplitude of the the FFT for frequency fn then the
power for fn is proportional to |Hn|2.
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3.6 Make a grid of locations (x, y) on the sea surface and for each
case a corresponding z value for each surface location. Compute the
range for each point r =

√
(h− z)2 + x2 + y2 and then collect them

into range bins. The total power for a range bin is then the sum of the
gain values for all of the points who’s range falls in that bin.

4.1 The position of the bug will be ~r = a cosωt x̂ + a sinωt ŷ. Find
the velocity of the bug. Write the velocity of the bug in terms of its
position x and y. The velocity of the bug at that location is ~u(x, y).

4.2 Expand both sides using the notation from this section.

4.3 Express both sides using the new notation.

4.5 Plug and chug.

4.6 In cylindrical coordinates the gradient is ∇P = ∂P
∂r r̂ + 1

r
∂P
∂θ θ̂ +

∂P
∂z ẑ.

4.8 After dealing with the rigid boundary condition use the dynamic
BC next.

4.9 Use the definition of φ and compute, using the know properties
of φ1 and φ2.

4.10 Just compute!

4.11 Plug into the Dynamic and Kinematic BC’s and see what you
get.

4.12 Dont forget that ∂
∂k

[
ω2
]

= 2ω ∂ω∂k .

4.14 Use the expression for the group and phase velocities from be-
fore.

4.15 We want to integrate the differential equation.

d~r

dt
= ~u(~r(t), t)

for the given function

~u(~r, t) = aωekrz [− sin(krx − ωt)x̂+ cos(krx − ωt)ẑ]
The Euler’s method is to discretize this to the following recursion rela-
tion.

~rn+1 = ~rn + ~u(~rn, tn)∆t

Since the motion is nearly circular you may want to use a higher order
approach. For example the second order Runge-Kutta would be

~rmid = ~rn + ~u(~rn, tn)
∆t

2

tmid = tn +
∆t

2

~rn+1 = ~rn + ~u(~rmid, tmid)∆t
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It will be helpful to scale the problem in order to get a more general
solution. We can for example reduce the problem to one scale parameter
α ≡ ka instead of the two parameters wavelength, and wave amplitude.
This can be done as follows. We notice that

~u

aω
=

1

aω

d~r

dt
=

d

d[ωt]

[
~r

a

]
So with defining a scaled time θ = ωt and a scaled position ~β = ~r

a we
have that

d~β

dθ
=

~u

aω
= ekrz [− sin(krx − θ)x̂+ cos(krx − θ)ẑ]

= eαβz [− sin(αβx − θ)x̂+ cos(αβx − θ)ẑ]
This differential equation depends on the single scale parameter α.

The drift velocity vd will be the ratio of the horizontal distance
the water travels in one cycle ∆rx = a∆βx and the period T .

vd
vp

=
∆rx/T

λ/T
=

∆rx
λ

=
a∆βx
λ

=
ka∆βx
kλ

=
α∆βx

2π

4.16 Use cosh(kz+kd)
sinh(kd) ≈ ekz and sinh(kz+kd)

sinh(kd) ≈ ekz.
4.17 The restriction ω2 = gk tanh(kd) is important. Use it to replace
ω2

gk with tanh(kd) in the dynamic BC.

6.1 In general to compute the gravitational potential energy of a dis-
tributed object we take the volume integral over the extent of the object

U =

∫
dm g z =

∫
ρ dV g z = ρg

∫
dV z

where z is the vertical coordinate of the volume element dV .

6.2 To Be Done

6.3 To Be Done

6.4 Follow the example in the notes.

6.5 To Be Done

6.6 Do it!

6.8 To Be Done

6.10 recall that E(fn) = dεnc.
6.12 Start by computing the expectation value of x2.

6.13 Recall that if y = ax with x and y random variables and a a
constant, then dyc = a dxc and σy = aσx.

7.3 Recall that m0 =
⌈
η2
⌋
, and recall the definition of m0. The

substitution u = − 5
4
f4
PM

f4 will make the integral trivial.
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7.4 Since the log function is a monotonically increasing function, the
maximum log[E(f)] is occurs for the same frequency as the maximum
of E(f).

7.7 To Be Done

7.8 To Be Done


