Physics 11 in a nutshell Thermal Physics

0F	equipartition theorem:	$\langle K \rangle = 3 \frac{1}{2} k T$	mean kinetic energy, temperature				
1D	specific heat:	$\frac{dU}{dT} = mc$	rate of change of internal energy with temperature				
1D	latent heat:	$Q=m\ell$	heat for phase change per mass				
$1\mathrm{F}$	heat conduction:	$\frac{dQ}{dt} = kA\frac{dT}{dx}$	rate of heat flow				
$1\mathrm{F}$	radiation:	$\frac{dQ}{dt} = \sigma \epsilon A T^4$	rate of heat flow				
$1\mathrm{F}$:	$W = P \Delta V$	work of expanding gas				
$1\mathrm{F}$	First Law of Thermodynamics:	$\Delta U = Q - W$					
	Electricity						
0F	Coulomb's law:	$F = \frac{1}{4\pi\epsilon_0} \frac{ q_1 q_2 }{r^2}$	force between point charges				
$0\mathrm{D}$	electric field:	$\vec{E} = \frac{\vec{F}_q}{q}$	force per charge				
$0\mathrm{D}$	electric potential:	$\Delta V = \frac{\Delta U_q}{q}$	potential energy per charge				
0T	potential and field:	$\Delta V = -\vec{E}\cdot\vec{\Delta}\ell$	relationship between field and potential				
$1\mathrm{T}$	point charge:	$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$	electric field created by a point charge				
$1\mathrm{T}$	point charge:	$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$	electric potential created by a point charge				
$1\mathrm{F}$	capacitance:	$Q = CV_C$	charge is proportional to potential difference				
2F	Energy stored in a capacitor:	$U = \frac{1}{2}QV_C = \frac{1}{2}CV_C^2$					
$0\mathrm{D}$	electric current:	$I = \frac{dq}{dt}$	rate of charge flow				
$1\mathrm{F}$	Ohm's law:	$V_R = IR$					
0T	Electrical power:	P = IV	rate of energy dissipation				
$2\mathrm{T}$	Root-mean-square voltage:	$V_{\rm RMS} = \frac{V_0}{\sqrt{2}}$	effective voltage of sinusoidal voltage				
0T	Kirchhoff's junction rule:	$\sum_{i} I_n = \sum_{i} I_n$					
0T	Kirchhoff's loop rule:	$\sum_{n \in V} V = 0$					
$2\mathrm{T}$	Effective resistance:	$R_S = R_1 + R_2 \text{and} $	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$				
$2\mathrm{T}$	Effective capacitance:	$C_P = C_1 + C_2$ and $\frac{1}{C_R} = \frac{1}{C_1} + \frac{1}{C_2}$					
$2\mathrm{T}$	RC circuits:	$V_C(t) - V_{\infty} = (V_0 - V_{\infty})e^{-t/RC}$					

Magnetism

0F Magnetic Force:

Magnetic Force:

Right Hand Rule:

 $\vec{F}_B = q \vec{v} \times \vec{B}$

 $\vec{F}_B = I\vec{L} \times \vec{B}$

force on charge, velocity, field

force on current, length, field

OF Right Arm Rule:

0F

0F

direction of magnetic force relative to velocity and field

direction of field caused by current

0F	Field due to a current:	$B = \alpha I$	magnetic field is proportional to current
0F	Faradays Law:	${\cal E}=-rac{d}{dt}ec{B}\cdotec{A}$	field caused by changing magnetic flux
0F	Lenzs law:	induced current opposes change	direction of field

Ray Optics

0D	Index of refraction:	$n = \frac{c}{v} \longrightarrow \lambda = \frac{\lambda_0}{n}$	
0T	Snells law:	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
0T	Thin lens equation:	$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$	
		Electromagnetic Waves & Wave Optics	
$1\mathrm{T}$	Energy density:	$\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2$	energy density of EM field
0T	Energy flux density:	$\langle I \rangle = c \langle u \rangle$	intensity of EM field
0T	Wave speed:	$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \frac{\lambda_0}{T} = \lambda_0 f$	
0T	Sinusoidal Wave:	$E = E_0 \cos(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t) = E_0 \cos(kx - \omega t) \text{with}$	th $k = \frac{2\pi}{\lambda}$ and $\omega = \frac{2\pi}{T}$
1T	Single slit:	$a\sin\theta_n = n\frac{\lambda}{2} \begin{cases} I_{\min} & \text{if } n \text{ even and } n \neq 0, \\ I_{\max} & \text{if } n \text{ odd and } n \neq 1. \end{cases}$	min and max of intensity
1T	Double slit:	$d\sin\theta_n = n\frac{\lambda}{2} \begin{cases} I_{\max} & \text{if } n \text{ even,} \\ I_{\min} & \text{if } n \text{ odd.} \end{cases}$	min and max of intensity
$1\mathrm{T}$	Diffraction grating:	$d\sin\theta_n = n\frac{\lambda}{2}$ I_{\max} if <i>n</i> even.	maximum of intensity
0T	Sum of two waves:	$\Delta \phi = n\pi \begin{cases} I_{\max} & \text{if } n \text{ even,} \\ I_{\min} & \text{if } n \text{ odd.} \end{cases}$	min and max of intensity
0D	Phase due to path:	$\Delta \phi_{\text{path}} = \frac{2\pi}{\lambda} (r_b - r_a)$	
$1\mathrm{T}$	Phase due to reflection:	$\Delta \phi_{\text{reflection}} = \begin{cases} 0 & \text{if } n_1 > n_2, \\ \pi & \text{if } n_1 < n_2. \end{cases}$	