Introductory Physics Two

1.1 The magnitude of the force between all pairs that are a distance a apart

is Fy = ﬁ. Now notice that since the diagonal is v/2a that the magnitude
. . ; ; q -1
of the force for pairs across the diagonal will be e (VAR = 5 Fo.
Now lets draw the forces on the upper right charge
& <L
Fo

° @

We see that the leftward and downward force will add together to make a force
that is along the diagonal toward the center and with a magnitude of v/2Fj.
The %FO force is away from the center, so the net force is toward the center
and of magnitude F = (v/2 — %)Fg. By drawing the forces on the other three
charges you can quickly see that all charges feel a force toward the center and
of equal magnitude.

1.2 Let
71 = (0.2m)j and q1 = 1.0uC
7o = (—0.3m)j  and g2 = —2.0uC
73 = (0.4m)i and g3 = 3.0uC

In preparation we compute the following quantities
71 — 72 = (0.5m)j and
5 — 73 =—(0.4m)i — (0.3m)j  and
r3 — 7 = (0.4m)i — (0.2m)j  and

|7l — 75| = 0.500m
|7 — 73| = 0.500m
|7y — 7| = 0.447m
and

q1q2/4meg = —0.018N - m?

¢2q3/4meg = —0.054N - m?
q3q1/4meg = 0.027N - m?

ﬁ1 = ﬁm + ﬁ13
_ 0@ Th =T Qg3 T — T3
dmeg |71 — T3 4dmweg |71 — 733
_ 0% Th -T2 @31 T3 — T
dreg [P — 72| dmeg |3 — 713
(0.5m)j
(0.500m)3

(—0.121N)i 4 (—0.012N)j

5(0.4m)i — (0.2m)j

—0.018N - m?
o (0.447m)?

—0.027N - m

Solutions - 1

Similarly
ﬁ? = ﬁ21 + ﬁ23
—(0.4m)z — (0.3m)j
(0.500m)3

0.5m)j
=0.018N - 2_(0.5m)]
" 0.500m)3

= (0.173N)i 4 (0.202N)j

—0.054N - m?

and
I3 = F31 + I3

5(0.4m)i — (0.2m)j —(0.4m)i — (0.3m)j

=0.027N - 0.054N - m?
R (WY R TTT(0.500m)3
= (—0.052N)i + (—0.190N)j
1.3
(a)
2= ] ] @ T @ T =T
E(r)=FE;+ Fy =
(T’) ! + 2 47‘(‘60 ‘77—771|3 47‘(‘60 |77—F2|3
S q xi—aj —q xi+aj
E = -
— E(xi) Aeg |0 — aj> | 4meo |xi + ajf?
_q x—aj —q T+ a)
 Ameg (22 +a2)3/2  4meg (22 + a2)3/2
q —2aj

~ dreg (22 + a?)3/?

1.4 We will use polar coordinates to describe the path of our line charge,
7s = Rcos 6t + Rsinfj and dg = %dﬁ. The field point is ¥ = zk, so that

7 —17s = —Rcosi — Rsin@j—&—zl;:

and

|7 — 75| = VR2cos20 + R2sin26 + 22 = VR2 + 22
Fortunately this does not depend on the angle 8, so we will be able to take it
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out of the integral that is to follovv.

F) / 47eq |T — rs|3

/2” 240 —Rcosbi — Rsin0j + zk
o 4dmeg (R2 + 22)3/2

1 Q 1 /Zﬂ (R i — Rsindi+ ]%)
- 27 o - n
4reg 2 (R2 4 22)3/2 [/, cos 6% sinfj + z
1 @ 1 o )
" dmeg 2 (R? 4 22)3/2 (0i — 0j + 2mzk)
Q 2k

:471'60 (R2+22)3/2
1.5 & =92 50y = By =0, 05="29 &, =0.

1.6 There is no flux through the faces touching the charge because the electric
field is perpendicular to the normal to these surfaces, that is, the field is parallel
to the surface. By symmetry the other three faces all must have the same flux,
call it ¢. If we take eight such cubes and put them together in a super-cube that
is twice as big, we can put the charge at the center of this super-cube. Each
of the cubes will have the charge at a corner, so each will have the flux we are
trying to find on the outside surfaces, there are 24 such surfaces surrounding
the charge so the net flux through the super-cube is ¢, = 24¢. But by Gauss’s
law the net flux is Qin/€0 so

Qin

Qin
24¢ =
¢ €0

— = 240

1.7 Use a gaussian surface that is a sphere of radius r, centered on the charge.
Since the field is radial, it is everywhere normal to the surface. Also the field
is uniform over this surface since there is no preferred direction. Thus

]{E-d}l:EA:Ezlwrz

Putting this into Gauss’s law and noting that @, is the charge of the particle,
we find that

Eam?=4 o p- 4 1

€0 4meq 2
1.8 Since the charge distribution is sphericaly symetric the field will radiate
straight out from the center of the charge distribution. Consider a sphere or
radius r with its center at the center of the charge distribution. The field will
at all points on this sphere be perpendicular to the surface of the sphere and of
constant magnitude. Thus the flux will be simply the magnitude of the E-field
times the area of the sphere ¢ = EA = E4rr?. But also the flux will be given
by Gauss’s law to be ¢ = ¢in /€, Equating these two expressions for the flux and

Solutions - 2

solving for the field we find
Gin
e dmr?’

If we are outside the sphere ¢, = Q. While if 7 < R then gy = pV =
3
%%WTP’ = Q% Thus we find

Eo { 504% ifr>R
Qr ;
PPy ifr<R
1.9 As in the previous problems, the electric field at any distance r from the
sphere’s center will be given by
qe'nc
€ 4mr?’
where ¢en. is the charge enclosed by a spherical Gaussian surface of radius r.
So let’s find the charge inside a radius r that is less then a.

r r 2 47p, 5
Qenc = / pdV = / P Arrdr = / Po (i) drr3dr = ﬂ-p;
\% 0 0 a 5a

Thus
3
5/)0(1 5> ifr>a
E— eor3
7;"22 ifr<a
€o

1.10 Let our Gaussian surface be a cylinder of length L and radius r with the
line charge on the axis of the cylinder.

The flux is zero through the ends of the cylinder because the field is parallel to
the plane of the ends. While the field is parallel to the normal to the surface
at all points on the sides of the cylinder, so that E-dA = E dA. Also the field
will be uniform in strength at all points on the sides of the surface because the
sides are all at a distance r from the line charge. Thus
JE-dn= [ Bodnse | Bdd

ends sides

=0+ EdA=F
sides sides
We have compute the left side of Gauss’s law. Now we need to compute the
charge inside of this surface. Since the surface contains a length L of the line
charge, the charge inside will be @i, = AL. So now we can use Gauss’s law to

dA = EL2wr

2
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find the field strength.

]{E’ . d:’4 _ Qin
€0
A
— EL2nr =ALeg — E =
2mepr

1.11 Pick our Gaussian surface to be a cylinder of radius r and length L
that is coaxial with the charge distribution. Then we know that the field is
perpendicular to the sides and parallel to the ends and thus the flux is

¢ = EAsides = E27rL.
But by Gauss’s Law we know that the flux is

Gn _ pVin _ prr?L
¢ = = =
€o €o €o
equating these two expressions for the flux and solving for the field we find

E = pr/2e,.

1.12 Once again, because the charge distribution is spherically symmetric, we
find that

_ Gin
4megr?’

Since all of the charge is on the surface of the conductor, if r > R then ¢, = Q,
and if » < R then ¢, = 0. So outside the surface we find E = and
anywhere inside E = 0.

1.13 Let the two bottom charges be 1 and 2.

Qg T G2 T—T

dmeg |[F— 7|3 dmeg |7 — a3

Q
4meqr?

F=SF=F +F=

(2uC)(TuC) (0.5m)(31 +%27)  (—4uC)(7uC) (0.5m)(—3i +%2))
N 4reg (0.5m)3 dreg (0.5m)3
(2uC)(TpC) (314 9)  (—4pC)(TuC) (—Li+ L))

N 4reg (0.5m)? d7eg (0.5m)?

= (0.76¢ + —0.445)N

1.14 Since we are mostly water we can compute the number of protons by
computing the number of protons in about 75 kg of water. Water is 18 grams per
mole and contains 10 protons per molecule. Thus there are %N 4~ 2.5%x10%7
molecules and 2.5 x 1028 protons. If there were 1% more electrons than this
there would be a net charge of ¢ = —2.5 x 10%°¢ ~ 4 x 107C. Arms length
is about r = 1.0m, so the force would be F' = kg—z = 1.4 x 10**N. While the
“weight” of the world is mgg = 6 x 102°N. So we see that these are of the same
order of magnitude.

1.15 From the figure

Solutions - 3

we see that

Thus we can write
7 7

E:kgf:ki = kq (x —20)i + (Y — Yo)]
r2 rZy

rd - [(33 - xo)z + (Z/ - yo)2]3/2

/ \
q,= 20uC q,= 200C
(1.0m)? + (0.5m)j
7y = (—1.0m)i 4 (0.5m)j

-

1 =T2 = 1.1m

1.16 From the figure

7=

T =

Thus we can write the E-field as

., . _ _ 7 e k
E = EEZ' = E1 +E2 = kql% + ]'CQQT% = 73(?1 +F2)
7'1 7"2 r
k(QO/,LC) N R 4N N
= —>=((0.0 1.0 =135 x 10%—=
(Lm)e (0-0m)i+ (1.0m))) e

If a charge g, = —3.0uC is at this point it will feel a force
F=¢q,E=—-4.06x1072N j
1.17

dq
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D=2 —r = 22§ 045m
7= —rcosfi —rsinfj
—7.5uC
dg = —22P% g9 — b
s

E:/k@f—@ Fd@z—];—)\/ (cos 0 + sin 07)d6
0

r2 r3 0

N
j=-21x10"=3
J ol

1.18 The work done by the field goes into changing the kinetic energy of the
electron so

_ R [sin 07 — cos 0] = —2

2
kA
r2 r2

AK =W — %mv?—%mvf = FAx

Notice that the force and Ax are in opposite directions so that regardless of the
choice of coordinates the product FF'Ax will be negative. Now use vy = 0 and

F = qF = —eF and solve the above equation for Az
2

MU;

Ar = —2

* 2eF

1.19 There is no force in the horizontal direction so the proton will have a
constant speed of 4.50 x 105% in the horizontal direction. Thus it will take a

time of —%:95m . — 111 x 10~ 7s to travel 5 cm horizontally.
4.50x10% 7

In the vertical direction there is a force ¢F = eF so the acceleration is
a=F/m = eE/m. We can now use the constant acceleration equation to find
the displacement

= 2.6cm

Az =vpt + Sat® =0+ %(1.11 x 107 "s)? = 5.67mm.
At this time the vertical velocity will be
v=wvg+at =0+at=—-1.02 x 10°2.
1.20 SF=md — F.+T+F,=0 — qE+T+F,=0
q(Eyi+ Ey)) + (—T'sinbi + T cos6)) —mgj =0

The x and y components of this equation are

T qF; —Tsin0+0=0
e qEy +Tcos —mg=0
Eliminating 7" and solving for ¢ we find
mg -8
=—— =1.09x10"°C
9 E,cotf + E, %

Putting this value back into the x equation we find T = 5.4 x 1073N.

Solutions - 4

1.21 For the vertical side the normal and the field are in opposite directions

so the dot product becomes
L . Nm?2
O, = E-AAd, = —~EAA, = —2.34 x 102%.

For the slanted side

0.10m AA,
AA, = (0. = .
» = (0.30m x cos 60°) cos 60°

While the angle between the normal and the field is 60° so

. S AA,
®d,=F -AA, = FEAA,cos60°=F cos60°= —d,
cos 60°

The flux on the other three sides is zero since the field is parallel to the faces.
Thus the net flux is zero, as it will be for any closed surface with no charge
inside.

1.22 Since the net flux is zero the flux exiting the paraboloidal surface must
be equal to the flux entering the flat side ® = 7r2E,,.

1.23 The total flux is ® = %= regardless of where the charge is place in the
box. If the charge is at the center then the flux will be equaly divided amongst

the six faces and thus the flux through each face will be ®poce = &=

1.24 Since the net flux is zero the flux exiting the hemispherical surface must
be equal to the flux entering the flat side. Also we know that the hemispherical

surface must catch half of what would go through a full sphere so ® = %i

1.25 First note that ¥ = —x% so r = 2 and # = —%. Thus
- dq . b \dx R b cxndx
E:/kﬁT:Lk?(—z):—Ak x2

b
= f/ kex™2dr i = —kc[z" 1" 4
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2.1 U = qAV = (0.08C)(9V) = 0.72J.

2.2
AK+ AU =0

— K;—K;=-AU
Kf —0= *(]AV
smut = —(—e)(+1000V)

2
— vy =/ -(1000V) = 1.87 x 1072

2.3 First we need to pick a path from the starting point to the ending point.
A straight line will do. Let #(t) = z(¢)i + y(¢)j = (1.0m)ti + (2.0m)¢].

- dr de, dy. _ . R
r= Edt = (dtl + dt]) dt = ((1.0m)7 + (2.0m)j)dt
so that
B — —
AV = 7/ E-dr
A
- dr
= — E 7 o —
| Bt Ga
1
= —/ (ayt + axj) - ((1.0m)i 4 (2.0m)j)d¢
0
1
- —/ ((2.0m)ti + a(1.0m)t)) - ((1.0m)i + (2.0m);j)d¢
0
1
= —/ (4.0m)at dt
0
= —(2.0m)a
24 . .
E=-VV
— 87‘/5 4+ 67VA+ al]%
N Ox 8y‘] 0z
i R e e M T k

:ayzi—l—axzj—kcw;yl%

2.6 Consider a closed surface that is totally within the outer conductor and
surrounds the inside surface of the outer conductor, as indicated by the dotted
line in the figure. Since there is no field inside a conductor, the electric flux
through this surface is zero; ¢ = 0. Thus by Gauss’s law we know that the
Qin = €9 = 0. But the charge inside is the charge on the inside surface of the

Solutions - 5

outer conductor, Qinside, plus the charge on the inner conductor, @Q,. Thus

0= Qin = Qinsidc + Qa I Qinsidc = *Qm
Next we note that the total charge on the outer conductor is the sum of the
charge on it’s inside and outside surfaces so that

Qb = Qinside + Qoutside
I Qoutside = Qb - Qinside = Qb - (_Qa) = Qb + Qa

2.7 Consider a Gaussian surface that is a sphere at a radius of 4.5 cm. Since
this surface is totally within the body of the conductor we know that the flux
is zero since the field is zero in a conductor. But this tells us that the charge
inside the surface is zero. Thus we know that the inside surface of the shell
must carry a charge equal and opposite to the charge of the point charge. Thus
the inside surface carries a charge of —2.0uC. In order for the shell to have a
net charge of 10pC then the charge on the outside surface must be 12uC.

—2.0uC 4 C
inside = —————5 = —1.0x 107" —
Finsid 47(0.040m)? . m?
IZO/LC —4 C

ide = ——————5 = 9. 1 —
Ooutside 477(0050111)2 3.8 x 10 2

28 C=2 — Q=C AV = (6.0uF)(1.5V) = 9.0uC.

2.9 From Gauss’s law the electric field near a charged plate is o/2¢p. Since
there are two plates, the field between the plates is E = o0/¢y. Also the electric
field is related to the electric potential difference between the plates, E = AV/d.

Thus we find that
o AV o €0

= - s = —

€0 d AV d
But the charge on the plates is Q = oA so that

Q oA o €0 €A

AV AV AV d d
2.10 Assume that the capacitor is charged so that the inside sphere has a
charge —(@Q and the outside sphere has a charge +@. By Gauss’s law the field
between the shells is E4rr? = —Q/eg — —Q/4meor? Thus we can find the

electric potential difference

b b
-Q Q (1 1
AV = — FE = — = - _Z
v /a dr /a 47T€07"2 dr 47'('60 a b

C—g— 47eg
AV 1/a—1/b

Thus

2.11 First suppose that there is a charge @) on the length L of the central
wire, and a charge —(@Q) on the outer shield. Now imagine a gaussian surface

5
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around the central wire that is between the outer shield and the wire, and a
distance r from the wire. There is no flux through the ends of this surface and
the field is normal to the cylindrical surface. Thus the net flux is ¢ = EA where
A is the area of the surface 27nrL. Thus ¢ = %“ — E = 27360% We want to
find the potential difference between the wire and shield.

AV =V, -V,

=—/ E-dr
b

I
&
&
8

= In(b/a)

Now we can us this to find that
C = g - 27T60L
AV In(b/a)

2.12 Move from the negatively charged wire to the positively charged wire.

Find the change in potential due to each wire and then add. From Gauss’s law
A

we know that the electric field due to the positive wire is given by F = 5=>—.

Thus the change in potential due to the positive wire is

@ ¢ Adr A
AV, =— | Eydr=-— = In (252
* +ar /b_a 2me,r  2me, n(+5*)

b—a
Similarly the change in potential due to the negative wire is
b—a b—a
—Ad A
AV, = — E,dr:—/ Do 2 (eme)
o o 2me,r 2Te,

Thus the total change in electric potential in going from the negative to the
positive wire is

Solutions - 6

Putting A = Q/¢ in the above equation and solving for @ we find
T€o T€Eo C T€o

R Y C M TY = B A T (=

a

2.13

(a) U = %CVC% = %(120/41?)(100\/)2 = 0.6J.

(b) Since there is a maximum field strength there is also a maximum energy
density Umax = 3€0E24. = 3€0(3 x 10°%)? = 39.8J/m®. So § < umax —

V> & = % = 0.015m3.

2.14 With ¢ < 0 the electric field is pointed toward the center and g = —|g|
so that

2 ld q .
E — — = —_——
4egr? (= 4mregr? "

But this is the same as form as for the positive particle so the integral will also
be of the same form.

2.15
AK+AU =0

— Ky —0=—-AU = —qAV =eAV

92 2 1 1 N
R = _— —_ = -
U=\ ey |0.005m  0.02m s

216 AK+AU =W, — (%mv]% —0)+¢AV = 0. Solving for the potential
difference we find
AV = —mv}/2q = m(0.4c)? /2e = 41kV.

217 AK+ AU = Wye — 04 gAV = Wye. But ¢ = Na(—e) and
AV =V} — V; = —14V so Wy = 1.35 x 105J.

218 AK + AU = Wye — (%mv? — tmv?) + gAV = 0 Thus AV =
—(%mv? — 3mv?)/q = —38.9V. We see that the final point is at a lower electric

potential. Note also that this depends in no way on the distance 2.0 cm.

2.19 For the alpha particle ¢ = 2e and

AK + AU =Wye — (0— 2ma}) +gAV = 0.
Now consider the electric potential difference AV. This is due to the change in
position relative to the nuclear charge @Q = 79e. Thus

AV:Vf—V:kQ—kQ:kQ_kQ:kQ
' rf T rf 00 Tf
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Putting this expression of the electric potential difference into the previous
equation and solving for r¢ we find

2k
Q98 %1071 m

muv;

ry =

Note: The alpha particles were not really fired at a gold nucleus but rather at
a thin sheet of gold. Thus since the gold atoms are neutral there is no electrical
force until the alpha particle passes inside the atom. It would thus have been
a better approximation to take to potential difference between the atomic ra-
dius and the stopping radius. This would be equivalent to presuming that the
electrons all reside on the surface of the atom. The cruder approximation that
we actually did gives a good result anyway since the atomic size it about four
orders of magnitude larger then the stopping radius, and thus is effectively at
infinity anyway. It is strange to think that an atomic radius could be effectively
infinity. This gives us an idea of how small the nucleus is compared with the
atom.

2.20 Let us bring the charges in one at a time and find the work done to
bring each one. The work to bring the first is zero since there is no repulsive
force to overcome, W7 = 0. The work to bring in the second is the change in
potential energy of the second charge in the field of the first as we bring the
second charge in from far away to a distance s from the first. Thus

2
:QAVFQ<’f_’“Q>:’@.

Ti S
Now we have two charges so the third charge will have a change in potential
due to both of the first two charges.

So QAV3 -
Similarly W, = QAV4 - T + @ + lf/QEZ

So the total work is

—(14vD) L

W= (4+%) B

2.21 We know that E = —VV so
v 8Vig

= (=5 + 6ay)i + (32 — 222)j + (—4yz)k = —5i — 5j + Ok

2.22 The constant o must have the units of charge per area.

L
:/kd / /\dx :/ kaxdx
o x+d

= aklz +d —dln(z + d)]§
= ak[L —dIn(1+ L/d)]

Solutions - 7

2.23 The electric potential due to the curved section is

TR
V. = /kd / /\ds )\7TR

The electric potential due to one of the stralght sections is
3R
V. = /kd / A0 k:)\ln% = kAln3.

The total electric potential is
V=2V,+V.=kX2In3+ ).

2.24 We know that for a point charge E = kq/r? and V = kq/r. Thus
V/E = r and we can find that » = 6.0m. We can then solve V = kq/r for ¢
and find ¢ = Vr/k = 2.0uC.
2.25
(a)

k@ n kQ n kE(—2Q)  kQ2zx n k(—2Q)  2kQd?

Cz+d z—d r  x2—d? r x(z?—d?)
(b) By the placement of the charges we know that on the z-axis the field is
parallel to the z-axis:

E = E,i+ Eyj+ E.k = E,i+0j + 0k = Eyi.

But also we know that

oV 2kQd*(32* — d?)

or 22(22 — d2)2

(c) Since x > d we can ignore any d” that is summed with an z".
2kQd*  2kQd?

B, =—

Ve r(z2-0) a3
B o~ 2de2(3x2 -0) _ 6de2
z ~ a:Q(xQ _ 0)2 T

2.26 First let us find two other relationships; charge and radius. The charge
(Q) on the large drop is twice the charge (Q,) on the smaller drops:

Q = 2Q,.

Also the volume of the large drop is twice the volume of the smaller drops so

gwr =924 7r7° SO

r=2"%p,

Now we can find the surface density

Q_ @ 2Qo s Qo

= — = e — 2 _— 21/3 °
TTAT dm? 4m(21/%7,)2 4mr2 To
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and the field strength

Q 2Q Qo

E=k2 =k—22 =2°k22 =23,
r2 (21/275)? 2 ’
and the potential
2 o o
V= kQ =k @ = 22/3kQ— = 2*3V/, .
r 21/37, To

2.27 Suppose that we are charging up the sphere slowly and that right now
the sphere has built up a charge q. Now consider how much work would be
required to bring an additional charge dq from infinitely far away to the surface
of the sphere. dW = dU = dq AV = dq(Vg — Vo) = dq(k% —0) = kq—g]. Now
we can add up the work done to bring each bit of charge as the sphere was
charged up from zero to Q.

Q 2

qdg |, Q

|/|/ = d‘/‘/ = ki = 7k7
/ /0 R 2R

2.28 By the symmetry of the charge distribution we know that the field is
radial at all places so we need only find the strength. By Gauss’s law we know
that the field is £ = k%Z¢. Thus with ¢; = 10nC and g2 = —15nC

0 for r<a
E={ k% fora<r<b
k‘qlT# forb<r

With the E-field we can now find the electric potential via
V=V—Voo=—/ Edr

If r > b then F = kqlT# and the integral gives V = k@. If a < r < b then
we must split the integral into two parts

T b T
Vz—/ Edrz—(/ Edr—l—/ Edr)
0o [’} b

b r
:—/ kq“;”dr—/ L gy
) r b r

- [/c‘”Jqu—o] e e
T T

b b b

If r < a then we must split the integral into three parts

b a r
V:—/ Edr—/ Edr—/ Edr
[e*S) b a

b a T q q
:—/ Edr—/ Edr—/ 0dr = k= + k=
(') b a b a

Solutions - 8

V (volts)

150

100

50 r (meters)

-50

-100

-150

229 Q=CV — C=Q/C =1.0uF. The charge and voltage are propor-
tional so since the charge has increased ten times the voltage must increase ten
time also so V' = 100V.

230 Q=CV — C=Q/C=Ne/C =18.0nF
2.31 The energy density of the field is %EOEQ so the total energy is
U= / TeoE2dV.

But we know that E = kQ/r? for r > R and zero for r < R and also we know
that the volume of a spherical shell of thickness dr is dV = 4nr?dr so

> kQ\? ©dr kQ?
U= / %eo (Q> Arridr = %47reok2Q2/ & —Q
R

R r2 72 2R
Equating this to mc?, solving for R and setting @ = e we find
k 2
= 2 —28x10 %m
me
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3.1
(a) The amount of charge that passes through can be found from the definition
of current.

dq = Idt

This amount of charge is also equal to the number of electrons that pass through
dN times the charge of an electron e.
dq=dN e
Combining these to eliminate dq we find
Idt (1.0 x 1073C/s)(1.6 x 107%s)

dN = — =10'8
e 1.6 x 10—19C

I I (1.0x1073C/s)

= = =8.0 x 10°A/m?
A" 7 T w0 x 10y S0x 10°4/m

3.2 Suppose that the electric potential difference between the ends of the wire
is AV, and the current through the wire is I. We can relate the electric potential
difference to the electric field strength.

AV =FEdr=FEL

We can use Ohm’s law to relate the electric field to the current density.

1
J=-F
p
Combining these we find
AV = pJL
But the current density is J = I/A so that we can write
plL
AV = —
A
From this we can compute the resistance.
AV L
R = — = —_
T~ "a

3.3 The greatest resistance will be found by picking the two sides that are
furthest apart (3a). For these the cross sectional area is 2a X a = 2a? and so
L 3a 3
R el —_— = _— N
PA™ P22 = P2
The least resistance will be found by picking the two sides that are closest
together (a). For these the cross sectional area is 2a x 3a = 6a® and so

L a 1
R=p— =p— = p—
pA p6a2 p6a

34 P=IAV — I=P/AV =0.5A.

Solutions - 9

3.5
(a) P=1 AV = I(IR) = I*R.
(b) P =1 AV = (AV/R)AV = (AV)?/R.
3.6
Vo=Vs(1—e RO — 7W/BC =1 Vi /Ve=1-5/10=1/2
— —t/RC =1n(1/2) — t=—RCIn(1/2) = 10.39ms

3.7 Going around counter clockwise, Kirchhoff’s loop rule gives us
Ve+Vrp=0 — Vg=—-V¢
But since Q = C'Ve we know that I = dQ/dt = CdVe/dt and

dVe
Vg = IR = RCZC
R dt

Putting this into Vg = —V we find that

dVe dVo 1
RC—= = -V, — =—-—V
dt ¢ Ta RC'°
Now we can check our proposed solution Vo = Vge #/EC to see if it satisfies
this differential equation.
dVe 1 1
Vi = Veet/RC —Vee t/BC [ __—_ )\ = v
o= e a5t RC RC ¢

So we see that this does satisfy the differential equation.

3.8 XF =ma— kf—z = m”—: — v = \/%e = 2.19 x 10°2. The time for one
orbit is At = 27r/v = 1.52 x 107%%s. So I = AQ/At = e/At = 1.05mA.

3.9 I=AQ/At=Ne/At — N =IAt/e=1.5x 10'5.

3.10 [ =dq/dt=12t>+5=17Aand J = [/A = 8.5A/cm?.

3.11 Let I, = 100.0A and w = 1207s~!. Then I = I, sinwt and
At At At
d I, I,
Aq = / Y g = / I, sinwtdt = {— cos wt} = —
0 dt 0 w 0 w
So Ag = 0.265C.

3.12 If M is the mass of the wire and m = 6%?g is the mass of one atom
then the charge in a length ¢ of wire is
Q= Ne= %e = @e.
m m
The amount of charge that passes a point in the wire in a time At is @ = [ At.
So we can say that a length ¢ of the charge passes in a time At if

@e:Q:IAt
m



Introductory Physics Two

But this would imply that the charges are moving with a speed of v = £/At.

50 4 1
m
=—=—=74x10"°2
YT A pAe X s

3.13 R=p% =p-5 =0.310Q.

Tr2 T

314 P=1IV=V?/Rso f = /R =136 — 36%.

3.15 Since the mass is the same the volume must be the same so
VA:VB — LAAA:LBAB — @:LAZQ
AA Lp

Also, the resistance of a wire is proportional to the ratio of the length and
cross-sectional area. So that

Ba _ La/Ax _ LaAp _

Rp  Lp/Ap Lp Aa
3.16 1/A-1hr = 3600C so 55A - hr = 198,000C. Thus the potential energy is
U = QV = (198,000C)(12V) = 2376kJ. One kilowatt hour is really a unit of
energy 3600kJ. So if 3600kJ costs 12 cents 2376kJ will cost about 8 cents. Not
much!

3.17 ¢mAT = heat = PAt = VAt — R = VAL — 290

3.18 The voltage on the terminals of the battery is V = £ — Ir but this is
also the voltage on the resistor V = IR so that IR =& — Ir.

(a) From this we can find that R =&/T —r = 7.7Q.

(b) The power lost in the internal resistor is P = IV = I*r = 1.7TW.

2-2=4

3.19 First find the equivalent resistance and then connect it to the 34 V power
supply and find the currents.

70
40 90 40 41Q 90 1710
| — \VVWN— WN——WWN\—0 | *— \VW—=e

100

20A L2ZA o0 20A 20A 20A 204
0.8 A
|1 N
|! |!
34V 34V 34V

(a) The 7Q and 1012 resistors are in parallel so they can be combined into a
4.1 resistor. This is in series with the other two resistors so that the effective
resistance of the system is Reg = 402 +4.1Q + 9Q = 17.1Q.

Solutions - 10

(b) The current through the system will be (34V)/(17.1Q) = 2.0A. This will
also be the current through the 42 and 92 resistors. The other two resistors
share the current, I = I} + I5. Since these two resistors are in parallel we know
that the voltage on them is the same so that Iy Ry = I3 Rs. Combining these
two equations we find

R

L =——"—I.
! R+ Ry

This result will work any time two resistors are in parallel. In this particular
case

10
Iog = —(2.0A) = 1.2A
< 7+10( )

So
Lioa = I — I = 0.8A

3.20 First lump the resistors and between points a and b

10Q
- |+25V 10Q_ 1,05y
10Q 25V
10Q 7,
50Q 500 203 E:::m
2.94Q
Now we see that the voltage between a and b is V, = méf%%v = 5.68V.

But the 202 and the 5¢2 are in series across this 5.68 V so the current through
these resistors is I = 5.68V /(2092 + 5Q) = 0.227A.

3.21 Adding the two that are in series we find that

1 1 1
Sl R C, = 2.0uF.
C. ~ 30uF | GOpF a
30QF 6.0 pF 2.0 uE
2.0 uF 2.0 uF

This is in parallel with the real 2.0 uF capacitor so the net capacitance is
Ceg = 2.0pF + 2.0uF = 4.0uF.
3.22 As the last problem we find the effective capacitance by the divide and

conquer method.

10
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15uF 3.0 uF 25 uF
20 WF 20 pF 45uF 20 pF 3.7 yF

e = o HE = e =

6.0 uF 2.0 uF

Now to figure the voltages we first consider the general problem of two capacitors
in series with a voltage V across the pair. We know that since they are in series
they must have the same charge so Q1 = Q2 — C1V53 = C3V5 but also
we know that the total voltage is the sum of the individual voltages so that
V =V, + V5 Combining these two equations in order to eliminate V5 and then
solving for V; we find V; = ﬁ, and similarly Vo, = ﬁ With this
result and the observation that capacitors in parallel have the same voltage we
can work from right to left in the diagram below to find.

2.0|B|.2V - 122 Vz.sv 122V 28V 1Y
Ly ===

3.23 In parallel the capacitance is C, = C; + C2 = 4.00uF. In series the
capacitance is given by % = C% + c% and also equal to one quarter the indi-
vidual capacitances of one of the capacitors Cys = iCl. Combining these last

two equations we find

4 1 1
R — _— — = C
c 01+O2 C1 =3C,

Putting this result into the first equation we find
Cp =3Cy + Cy =4.00pF — Cy =1.00puF and C; = 3.00pF

3.24 Divide and conquer again!

Solutions - 11

3uF 6pF 2 yuF

|_| 10/3 uF

2uF  4pF —_ 4/3 uF _
90V 90V 0V
60V 30V 90V

= P
-

60V 30V __§ 90V *— —e

I
90V 90V 0V

With the voltages we can easily find the charges using Q@ = CV
Q2 = CoVa =2uF - 60V = 120pC
Qs = C3Vs =3uF - 60V = 180uC
Q4= CyVy =4puF - 30V = 120uC
Qe = CsVs = 6uF - 30V = 180pC

U=1QV=1CVv?=135mJ

3.25 Let us first add a power supply to charge up the capacitors and find the
voltages and thus the charge on the individual capacitors.

C,

T

|+
0

|+
0O

@]
|
A+

Notice that the charge for Cy comes from C; and Cj, so that
Qs =Q1+Q3 — CyVy=C1Vi +C5V3

which with these particular capacitors becomes

C C
Vi= Vit 22V — Vi=Vi+4V3
Cy Cy

Similarly
RQe=Q3+Qs — Voa=2V5+1V;

11
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We can find three other equations with Kirchhoff’s loop rule
Vi—=Va=V3=0
Vs —Vs+Vy=0 plus the two above
Voo =V1i—=Vyi=0
Using the second equation to eliminate V5 we find
Vi—=Va=V3=0 Vi=V1+4V;s
Vab =Vi—=Vi=0 Vo=2V3+ (V3 +Vy) =3V3+Vy
Using the second to eliminate V; we find
Vap = 2V1 +4V5
Vo =3Vs+ (Vap — V1)
Using the first to eliminate V3 we find
Vap = 6V7 — 4V,
4Vo =2V1 + Vi
These two equations give us Vi = V5 = %Vab. Now notice that the total charge
supplied by the battery is is

Q=0Q1+Qs=C1V1 +CaVo = 3(C1 + C2) Vi

Thus we find that the capacitance between points a and b is C' = %(C’l +Cs) =
3.04F.

Viy=V1+4V3
Vo =2V3+ Vs

Vi—Va— V3 =0

3.26 First let us label the currents and show the direction of potential dif-

ference on the resistors. Now we can write out the two junction rules and the
three loop rules.

Iy=1,+1I; Iy=1+1I;
I3+ 15 =1 Is+1Is =1
—
E-LHR-1I44R=0 e I,— 11 —144=0
o=F

26 —1,2R—-133R=0
I44R — I33R =0

2I,—12—-133=0
144—-133=0

Solutions - 12

Using the first two we can eliminate I and I; we get
I, =51 —4I5 =0
2l,—5I3 —2I; =0 —
4 + 415 — 313 =0

The last of the resulting three equations was used to eliminate I5. After which

the two were combine to eliminate I;. Thus we find Is = 50mA. Since this is
positive we know that the direction of the arrow is the direction of the current.

10—511—415:0 Io
_>I5 = =
31, — 10I; — 1315 = 0 5

3.27 First let us combine resistors and label the currents.

3.0Q
Pr—
50Q I T _ I _
3|

600 § 4.0Q

> 1.0Q 100 mmm IRk IE

8.0Q § ' 8.0Q 1

B + +

4V 12V -4V -12V
The junction and two current equations are
I =1+ I3 L =1+1;

180 + 15400 — 12V =0 L2+ 1, =3A
Now use the first to eliminate I; and then eliminate I to find

Iy = 1A
4l + 713 = 2A
30, +2I; = 3A

Iy=—8A

3.28 Assume the resistance of the two light bulbs is constant. Then for the
same potential difference, the 25W light bulb has less current than the 100W
light bulb since P = IV. Since R = V/I, Ras > Rigo. The intensity of a
light bulb is proportional to the power being dissipated, and this is equal to
I’R. So, put the light bulbs in series; the current though each will be the same
(different potential differences). If the current is the same, then the bulb with
the greatest R will have the greatest I2R. Since Rys is larger, the 25W bulb is
brightest.

329 P=1V — I = P/V SO 11500 = 12.5A and 11000 = 8.33A and
I750 = 6.25A. Thus the total current drawn is 27.08 A, and more then the
circuit can handle.

3.30 In a previous problem we found the resistance of 15m of 12 gauge copper
wire to be 0.310€2. Thus 16 feet will have a resistance of R = 0.12, and the
power lost in the wire will be Py ga = I2R = 0.1W and Piga = IR = 10W.

12
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3.31 Let us write the power in terms of the characteristics of the wire P =

I’R=1%pl/A — P/t = I?p/A Thus if the two wires are to have the same

power per length at maximum current we relate the maximum currents by
Ifu% - gu”% — Iy =Ica % = 15.5A

3.32 Once steady state is reached there is no charge flowing to the capacitor

and thus no current in the 3 k2 resistor. With no current through that branch

we know that the current in the 12 and 15 k{2 resistors must be the same and
equal to 9.0V /(12k + 15k2) = tmA

/ 12kQ
oO—WWW,

9.0V —/— R,=15 kQ§

—— 10 puF

% 3kQ

Since there is no current running through the 3k} resistor the voltage on the
capacitor will be the same as the voltage (5V) on the 15k2 resistor. Thus the
initial charge on the capacitor is ¢, = C(5V) = 50uC

When the switch is opened the 12k2 resistor and the battery are effectively
disconnected from the circuit. Thus we end up with an effective resistance of
R = 15kQ + 3.0kQ? in a loop with a capacitor with a charge of ¢, = C(5V) =
50uC. The charge on the capacitor will drop exponentially as ¢ = goe~*/£C.
This will cause a current

I = —dq/dt = (g,/RC)e V/FC = [ ,e~t/EC

with I, = 278uA and RC = 0.18s
If I =1,/5 then e /¢ = 1/5 — ¢t = RCIn5 = 0.29s.

Solutions - 13

13
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4.1
(a) The vector ¥ = R cos 67+ Rsin 0] points to the wire at the location 8. Thus
if we move a small angle df the position vector moves a small amount

- dr’

dr = d—gdﬁ = (—Rsin i+ Rcos0})df = (—sin 07 + cos 07) Rdo
But the change in the position is the vector df that we are looking for.
(b) o A

dl x B = (—sinfi + cos6))Rd0 x Bj = —sinB RdOk

So
F= /I dl x B = —IBR]%/ sinfdo = —2I BRk
0

(c) Al = —2Ri So F' = IAl x B = I(—2Ri) x Bj = —2IBRk.

4.2 The force on the two side pieces is zero because the current is parallel
to the field. Using the RHR we see that the force on the upper section is out
of the paper, so that the torque is to the right. The magnitude of the force
on the upper wire is I A¢ B = TwB. This force is at a distance h/2 from
the axis of rotation so it creates a torque Tupper = 7 X F = bIwBi. The
force on the lower section is also JwB but is into the paper, which also gives
a torque to the right. The the net torque is the sum of these two torques
T = Tupper + Tlower = %IwB + %IwB = JThwB. Note that hw is the area of
the loop so that the torque is ITAB, the product of the current, area and field
strength. This ends up being true regardless of the shape of the loop, when the
field is parallel to the plane of the loop.

43 @B=m% — m=gBL =919 x 10 kg
4.4

(a) A,B, and C.

(b) Cor D.

(c) Cor D.
(d) AorF.

4.5 It will take a time equal to the circumference divided by the velocity to
complete one revolution.

AL
v v
But )
F=ma — qu:mU— ., r_m
r v qB
so that m
T=2r—
WqB

Solutions - 14

We see then that the time it takes to make one revolution depends only on the
mass, and charge of the particle and the magnetic field strength. It does not
depend on the velocity of the particle.

4.6 First let us compute the Lorentz force.
F=q(E+7x B)

= g(Ej + vi x Bk)

= q(Ej+vBixk)

=q(Ej+vB(-)))

=¢q(E —vB)j
So we see that the force will always be in the positive or negative y direction
with the sign being determined by the sign of ¢(E — vB).
(a) If v = E/B then ¢(F —vB) = 0, and the Lorentz force is zero.
(b) If v > E/B then (E — vB) < 0, and the Lorentz force in the negative
direction for a positive particle.
(c) and in the positive direction for negative particles.
(d) If v < E/B then (E —vB) > 0, and the Lorentz force in the positive
direction for a positive particle.

In words we can just say that when v = E/B the magnetic force and elec-

tric force is balanced. Since the magnetic force is proportional to the velocity
the magnetic force will be stronger when the velocity is greater than this “bal-

ancing” velocity and the electric force will be stronger if the velocity is lower
than the “balancing” velocity.

4.7 By the right-hand-rule we have, west, 0, up, down. We can also do this
problem more algebraicly. Set our coordinates so that 7 is east 7 is north and k
is upward. In this system B = Bj so that

—

F:qﬁxéz—e(vxi—kvyj—l—vzl%) x Bj
— ¢B (vwixj—i—vijj—i—vzl%xj)

= —eB vk +,(0) + v2(—1)) = —eB (vak — v:3)

Thus for (a) 7 = —vk — v, = vy = 0 and v; = —v so that F =
—eB (Ofc - (—v)i) = —evBi and the direction is west.

For (b) ¥ = vj so ﬁfO. )

For (¢) ¥ = —viso F = equk or up.

For (d) v = %(i —])so F= —e5Bk.

4.8 The field is in the positive z direction.

14



Introductory Physics Two

4.9 This question is asking us to relate acceleration and force so we must start
with Newton’s second law.

YF = mad
qE + qv x B =ma
qEk + qui x (Byi + Byj + B.k) = mak
qEk + qu(B,(0) + Byk — B.j) = mak
(¢E + quB, — ma)k + (—quB.)j =0
qE +quB, —ma=0 and quB,=0

1
B, =~ <m“ —E) =-26x103T and B,=0
q

Notice that we cannot determine B, and indeed any value would give the same
results. The given measured quantities do not determine the B-field uniquely.

4.10 The magnetic force is due west. The component of the field perpendic-
ular to the velocity is the vertical component of the field which is B sin 60° so
the magnitude of the force is F = quB, = quBsin60°= 2.6 x 107N

4.11 Plug and chug.

B B ik ij ok
F=gixB=q|v, v, v,|=¢€¢|2 —4 1%
B, B, B. 1 2 -3
= e(10i + 7j + 8k) %

= (1.60 4 1.1j+ 1.3k) x 107**N
F=234x10""®N
4.12 Looks like we need to go back to the definition of work for this.

W:/ﬁ-dgz/(qaxé)-dgz/(qﬁxﬁ)-ﬁdt:o
Since (q¥ x é) must be perpendicular to ¢ and thus the dot product is zero.
4.13 qSincg the_’ﬁeld is Hniform and the wires straight we can use the relation-
ship FF =1L x B with B=Bj .
Loy = —lj so Fop = I(—€j) x Bj = —IlBj x j = 0.
Lye = 0k so Fy. = I(¢k) x Bj = I/Bk x j = —I(Bi.
—li + 1)) x Bj = —I{Bk.

=

Lea=—li4+ljso Foy=1
Eda Zfi—éfﬁ SO ﬁda =

Notice that the sum is zero.

(
(

Solutions - 15

4.14
n_ l 2mV

B e

4.15 AK + AU = Wy so Ky — 0+ ¢AV = 0 thus v = /—2¢AV/m =
v/2qV/m. Now that we have the velocity we can find the radius XF = ma —

quB = m—2 — r=15

\/qu Mzmv — 1.98cm
4.16 (a) up, (b) out, ( ) none,
4.17 d’:Zﬁ/m—[qE—i—qUxB]/m—i[E—l—va} So

@ = L1505 + 2000 x (0.2 + 0.3] + 0.4k)] %

m
q
-

— R =1.98cm

507 + (0 + 60k — 807)] X = 5[601% — 30
= 2.87 x 10°(2k — )2

15
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5.1 Fromt¢=7/2tot=rm.
5.2 The peak of the parabola is at the point (0,1). With the parameterization
7(t) = @+ bti + ct?j the peak occurs when ¢ = 0. So that @ = 07 + 1), and

F(t) = bti + (1 + ct?)j
Now we know for some value of ¢ that we will reach the point (1,0) so that
bt =1

— c=-V?
1+ct2=0

Ft)y =bti+ (1 +ct?)j=1i+0] —
so that
F(t) = bti + (1 — b*t%)j

This already goes through (-1,0) at t = —1/b, so that we are done. Note that
we can choose the parameter b as we like, so we might as well let b = 1 and
then

F(t) =ti+ (1 —t%))

5.3 The parameterization is

7s(t) = ti
So
7 —7s(t) = —ti + yj
7y = 7O = 44
|7 — T ()P = (£ + %)/
and
dry .
=1
dt
and

drs

2 [ = 7] =1 % (—ti+ ) = v

Now putting this into the parameterized form of the Biot-Savart law we find:

— — b 2
N Y 1) piol yk
B = dt = — ———dt
(Tf) A / \rf _ Fs(t)|3 A " (t2 + y2)3/2
b
_ pol t i
Ay | V2 +y? ]

5.4 The parameterization is
7s(t) = acosti+ asint]
where ¢ goes from 0 to §. The field point is 7y = 0. So
7p —75(t) = —acosti — asintj

|7y — 7 (t)|* = a® cos? t + a*sin® t = a?

Solutions - 16

7y = RO = o

and
drs inti + tj
= —asinti + acos
dt J
and
dar. ~
C;S x [Ff — 75(t)] = (—asinti + acostj) x (—acosti — asint)) = a’k
Now putting this into the parameterized form of the Biot Savart law we find:
_ I [ 9 [F — I I6.
By = ol [ e I at = 5= / =
47 |7p — 7s(t )| 4r a

5.5 By employing Ampere’s law we find that the field at a radius r is B(a) =
tolin/2ma. But for a < R

a a I a
Iin:/JdA:/ J27TTCZ’I“=/ 2mrdr = [ —
0 o 2mRr R

MoIin HOI% /’601
B = = =
(a) 27a 2mwa 2R

Thus

For a > R we know that I, = I so B = p,I/2ma.

5.6
(a) The force is repulsive.
(b)

5.7 B=pupl/2mr =2 x10"7T.

5.8 With k along the axis of the loop of radius a the field at the center is

1d§x 7 pu, [ Idsk  puolk

/dB ar / 2 4n a?  4ma? /ds

_ 'uOIkQWCL: polk 4= pol

4dra? 2a 2B

5.9 It will take a time of At = Az /v = 271 /v = 1.56 x 10~ 165 for the electron

to go around the proton and thus electron current will be I = dq/dt = e/At =

1.0mA. From the previous problem the field at the center of a current loop is
B =pu,I/2r =11.9T

= 31.4cm

5.10 Since the point P is along the axis of the horizontal part of the wire this
wire will not contribute to the B-field at the point P. So lets just find the field

16
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do to the vertical part.
= =, [(IdSx T p,l [dSxT
B=[dB="+ =—
/ 4 / r2 A / r3
uol/o dyj x 7 uoI/O J x (21 +y))
i ). o @
,uOI/ —zk+0 Lol A/O dy
= ————dy = ——1zk s
ar |_ (2% + y2)3/2 Ar oo (@2 + 42)32
7/,LOI:E]A€ /0 x sec? 0df
© 4rm _ny2 (22 + 22 tan® 0)3/2

I - 0 2 I. 0 I .
— _bo :Ek/ reee vev 9d9:_,uo k:/ cos@d@zio k

47 _z 3 sec3 0 Az T

73 4

2
5.11 Since d§ and 7 are parallel for the radial lines, these parts of the wires do
not contribute to the B-field at the point of interest. The field contributed by a
circular section of radius r and subtended angle 6 is found just like in problem
30.3 but this time f ds = As = rf so the field is B,y = 4‘;":2 rf = %. For the
circle at radius b the current is CW so that the field is into the paper at the
center while the circle at a is CCW and the field due to it is out of the paper.
Choosing out of the paper as k we can write
~ . - wold (1 1\ -
B—Ba)gk/‘-i-Bb’.g( k‘)— . (a b)k

Since b > a we know that this will be out of the page.

5.12 The magnitude of the B-field at a distance r from a long straight wire
is given by B = ol " Thys the force on one wire is due to the field of the other

2mr
F=1LB; =1 L%%2 So we find that £ = #5112 — 80N /m.

5.13 Pick a circular path of radius r around the axis of the wire. We know that
the field follows this path and the field strength along this path is a constant,
so that § B-ds = B2rr. But Ampere’s law tells us that this must proportional
to the current through the closed path. Thus B27r = u,li, and we can find
the field B = % at a radius r if we can find I;,.

r r 2
L = /JdA :/ J2nrdr :/ Jo (1 - (g)) omrdr
0 0 R

For 7 > R we find fiy = 2mJo (3R? = § () ) = 2nJo} 2. Thus
B tolin B odo (%r — i (T—Z)) forr < R
2mr poJoiRTQ forr > R

Solutions - 17

If we let B, = poJoR/4 and & = r/R then this becomes
B Bo(2x —23) forx <1
T ) Byt for x > 1
Graphing B verses = we get the figure to the right. From the figure we can see

that the maximum occurs for £ < 1 and thus we can maximize the function
Bo(2z — 2?) to find the maximum field.

dB/dx = By(2 — 32?) =0 — x=/2/3.
Thus rmax = /2/3R and Bpax = \/32/27Bg

5.14 As in previous problems with cylindrical symmetry, the field at a radius
ris B = polin/(27wr). At r = a the current through the loop is 1.00 A and out
of the page so that the field is CW and of magnitude B = 0.20mT. At r =
the current through the loop is 2.00 A and into the page so that the field is
CCW and of magnitude B = 0.13mT.

5.15 Again by employing Ampere’s law we find that the field at a radius r is
B = polin/2mr. But for r1 < R

T T 2
I, = /JdA =/ J2mrdr 2/ br2mrdr = gbr“?'
0 0

For » = R we get the entire current so I = [}, = 27bR?/3 so that we find
b= 3I/27R3. Thus at a general radius r < R

I I r3 ﬂoIin Ho rg ,UOIT2
in=1— — = = — =
R3 2nr 2mr” R3  27wR3

For r > R we know that I;, = I so B = u,I/27r.
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6.1 First redraw the figures with the induced field shown.

Kby

In quarters 1 and 3 the fields are in the same directions and the flux is de-
creasing, thus the induced field is helping out the decreasing flux trying to keep
it from decreasing. In quarters 2 and 4 the fields are in opposite directions
and the flux is increasing, thus the induced field is trying to stop the flux from
increasing.

6.2 We pick our Amperian loop to be a circle with radius r between the plates.
Then the magnetic field is parallel to the loop and the electric field is parallel
to the normal to the loop. Also there is no current density between the plates
so we can simplify Ampere’s law as follows.

fé.dz:uo/f.dmmeo%/ﬁ.dz

B2rr =0+ /L()E()% [atm‘ﬂ
B2nr = ,uoeoam“2
B = %uoeoar =1.0x107%T
Notice that the induced magnetic field is very small compared with the electric
field that is causing it.
6.3 The loop rule gives us.
Ve —E-AV =0
dI

— Vs~ Lo —IR=0

(a) There is a steady state solution to the above equation: Iss(t) = Vg/R. Let
us try a solution of the form
dl _ df

IO =fO) +Vs/R — — =
Substituting this into Vg — L% — IR =0 we find

df Vs,
Vs~ Lo - (f(t)+R>R—O
df

_Li— =
— L~ ()R =0

Solutions - 18

_R Vs
It)=Ce 1t 4+ =
— 101 +
Now we know that at t = 0 the current is zero so that
Vs
0=Ce+ = c=--2
“tm R
V.
— 1) =5 [1-e P
(k) dl Vs R
S _ Ry Ry
— - =L=2= =
=Ly =Lppet =Vse?

(c)
AV = IR =V [1 - e ]

(d) The loop rule says the following sum should be zero.
V,—E—AV =V, — Vse Bt — Vg [1—6*%] ~0 OK
()

Pug = I3R/2 — IR =2P,,, = 120W
(b) But the supply from the outlet is 120 volts so that
IR = Vy = (120V)V2 = 170V
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Combining these two equations we can solve for the current:

2R 120W
Ip =22 = ——— = 0.706A
"= TR~ 1rov 00
Now we can compute
IhR 170V
=—= = 2400
r Iy 0.706 A 0

(c) Yes.

6.5 Kirchhoff’s loop rule gives us that

Vs(t) = Vi(t) — Vr(t) =0 — Vs(t) = Vi(t) + Vg(t)
In the phasor diagram this implies that the sum of the phasors for V;, and Vg
must be equal to the phasor of the source voltage Vg. Since the resistor phasor
is parallel to the current phasor we know that the phasors for V;, must lead the

phasor for Vi by 90° Thus the sum (also Vg) forms the hypotenuse of a right
triangle.

w!

L T T
— s P
—_—
W
v Vi
Vs W
Ve

Since the lengths of the phasors are the amplitudes of the voltages we can use
the pythagorian theorem to find that

VE = Vi, + Vi, = (RI)* + (Zp1p)?

2

VS 2 2
— IgO:R +ZL

VSO_ 2 Q_Jﬁ
T =\/R2+ 2722 =\/R2 + (wL)

Now we can find the gains.

) = Vo _ Viu/To _ R B 1
YT Vs, T Veo/lo JRE+ WLE 1+ (WL/R)?
GL((,L)) o VL() o VLO/IO o wL _ 1

" Ve, Vso/Io  JR2+ (wL)? \/(RJwL)?+1

Solutions - 19

Gain

We see that the resistor has a higher gain for low frequencies.

6.6 From the loop rule we find
Vs(t) = Vr(t) + VL(t) + Vo (t)

!

. Ve
fa. v, \ RS al

M SN = _
3 %

From the phasor diagram we see that the amplitude of Vg forms the hypotenuse
of a right triangle with the other two sides having lengths (Vg,) and (Vz, — Ve, ).
Thus from the pythagorian theorem we find the following.

Vi, = Vi, + (Vi = Ve )* = (RI0)® + (Z1Io — Ze o)
Solving for Iy we find
1
Iy =
\/R2 + (ZL — Zc)2
This will be maximized when the denominator is minimized, and this will occur

when Z; = Z¢ that is when w is such that wL = i — w= %

Vs,

6.7 ®; = B. /Yl = —BA; cos 9._’The_’t0ta1 flux ®; + 5 = 0 since together
they form a closed surface and fB -dA =0. Thus &3 = —®; = BA; cosé.

6.8 [— Y _ Nd®/dt _ NAAB _ 200(0.20m®)(1.6T) _ 160A.

R~ R~ RAt R(0.020s)

6.9 E=—-4=—9[ABe V7] = ABap=t/7,

6.10 Since we know that the field is parallel to the normal of the area at all

points we can write ® = f B-dA = f BdA. But he field strength at a distance

r from a current carrying wire is B = % so we can write the integral over the
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area as an integral over r with the area elements dA = cdr.

a-+b
<I>:/BdA:/ Hol gy — Holey (atD
o 2mr 2m a

B do LoC a+ b\ dI
E=— NG ="No hl( a )dt

Thus

o b
— _NHeC ln<a i ) Tow cos(witt¢)
2m a

6.11 Picking a closed loop of radius r as the path we can use fE" -ds =

f% fé - dA to find the electric field. Since we know that B is perpendicular
to the area and E is parallel to the perimeter, this integral equation becomes

%E'~d§:—i/§-dff — E27rr:—iBA.
dt dt

But —4BA = —A4B = —772(0.060t T). So that we find E = —1r(0.060¢t T) =
70.0018N/ C. The negatlve in this case implies CCW since the direction im-
plicitly chosen for the normal to the area was in the direction of B and thus
the direction of the path was CW.

6.12 As in the previous problem
d 1 dB
E2nr = ——BA EF=——A—.
o dt — 2rr dt
But this time A42 = 7 R%(6.0t — 8.0¢)T. So that
R2
E=-—@ 3.0t2 — 4.0t)T = (—0.375t* + 0.5t)N/C
At t = 2.0s we find F = —(0.5)N/C the negative again indicates a CCW field.
The force on an electron will then be F' = ¢F = eE = 8.0 x 1072°N in the CW
direction.
613 Q :Nf d9qt = ydt = [Yadt = f%di = X [do = KA0
7A[BA] = FA[BJA = F[By — B-]A = 20%[2.20T ](0 01m? ) = 0.88C.
6.14 The flux is ® = [B-dA = B- A = BAcoswt. Thus & = —d®/dt =
BAwsinwt = (3.016V) sinwt, and the current is [ = £/R = (BAw/R) sinwt =
(3.016A) sinwt. The power dissipated in the loop is P = IV = (9.096J) sin” wt.
From the forcg on a current is F' = IL X B we find that the torque on a current
loop is 7 = IA x B = IABsinwt = (A2B?w/R) sin® wt
6.15
(a) ¢ = Npugnla®
(b) ¢ = Npugnlc?
6.16 Look at the loops from the side:

Solutions - 20

A A 1}

®
A B

(a) Increasing the current means the magnetic field increases, meaning the
magnetic flux through loop B is increasing. Thus, the current induced in B
must cause a magnetic field opposite that of the field caused by A. So the
current flows clockwise. (b) Since the magnetic field of B is opposite that of
A, they act like magnets with like poles facing each other—they repel. If the
current is decreasing, then the induced field, and so the induced current flows
in the opposite direction as before. In this case the loops will attract.

6.17 - O ,,,,,,,,

(a) As the magnet moves toward the loop, the flux through the loop will in-
crease. After the magnet is halfway through the loop, the flux will begin to

decrease. A graph of flux versus time will look something like:
|

\

(b) As the magnet moves in, the induced current will be counterclockwise since
the induced magnetic field will be opposite the magnet’s field. Using positive
current as counterclockwise, the derivative of the curve above gives:

A\

6.18

(a) After the switch has been closed for a long time, the inductor acts just like
a wire, so the current flowing through the 10012 resistor is zero and the current
flowing through 102 resistor is Iy = 10/10 = 1A. This is also the current flowing
through the inductor.
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(b) Open the switch, at that instant there is a current flowing through the
inductor which begins to immediately flow through the 100 2 resistor. The
initial current through the 100 € resistor is 1A, so the initial potential difference
(¢) The current falls exponentially:

I(t) = Ipe —t(10092/2H)

6.19 & = LdI/dt = LAI/At=100V.

6.20 For a solenoid L = p,N?A/¢ = 13.6mH.

6.21 & = LdI/dt = Llyaxw coswt = (18.8V) cos wt.
6.22

(1A) —50t.

Let us write out Kirchhoff’s rules.
I =1L +1I3
V-_IL1R—I3R=0
dl
LR — 2R — Ld—Q =0

We can rewrite the first two equation to give us I1 = %(% + ) and I5 =

1(% — I) Putting this into the third equation gives us

2
174 dI,

EYRA L2R - L52 =

2 ~ )R- B2R—L0m =0
dls

5LR—2L52% =

V —5LR =0

Which can be solved by separation of variables. With the initial condition I = 0
at t = 0 the solution is

L= 5(1- e PRY2LY — (0.5A)(1 — e ¥/7) with 7=0.1s.
This then gives us
= b () = 3 (54 20 e/ = 6 -t
6.23 Taking the derivative we find that
dI/dt = I,e */™(=1/7) = I(-R/L).
Plugging this in we find that
Ldl/dt =—IR and IR+ LdI/dt=0.

6.24 The energy is Up = SLI? = 2, N2AI* /0 = 2.4p] .

Solutions - 21

6.25 The capacitor initially be charged to a potential £ and will thus have an
initial (and max) charge of ¢y = C€.

After the switch is thrown the battery and resistor are effectively removed from
the circuit and thus we just have an LC circuit with an initial charge of qg = CE.

dl d?
VC‘FVL—O—’a‘FLE O—)Eg:—%
Which has the solution ¢ = g, coswt with w = l/m This leads us to the
current I = dq/dt = —q,wsinwt. The total energy in this ideal circuit is a
constant so we can just find the initial energy which is the energy stored on the
capacitor U = %QV = %qoé’ = %052.

6.26 Over the time interval (0,7) (where T is the period) the voltage can be
written as V =at + b = w%t — Vinax thus

Vins = /& Jy V2t = /Vies [T (2 — At 4 1)de = Vs,

3
6.27 Puc = 1 fo Pdt = L [T V2ar = L7 YesStet gy o that P, =
Vi, R = Yasx. Thus we find that Rysw = 1920 and Rygow = 1450

6.28 [ = Imax smwt — Vi = LdI/dt = Lly.xwcoswt, and we see that
Vinax = LImaxw. Using this we can find L = Vijax/Imaxw = 42mH. Also

w = Viax/LInax = 94224

6.29 If the capacitor is to begin uncharged then the voltage must begin at
zero so V = V,sinwt. But

q=CV =CV,sinwt
so that J
I= d—(t] = CV,wcoswt = CV2Vpsw cos wt
and thus 7(1/180s) = —32A.

6.30 X¢ =1/wC . Thus if X¢ < 175Q then w > 1/(C175Q) = 260% —
f > 41Hz. The impedance for a capacitor that is twice as big will be half so
this is X¢ < 88€2.

6.31 ¢ =CV = CVyaxcoswt, while I = dq/dt = —CVipaxw sin wt.

6.32 Xc =X, — lwC=wl — w=1/VLC =175 x 10°2¢ —
f = 2.79kHz.

6.33 The inductive impedance is X; = wL = 78.5€). The capacitive impedancel}
is X¢ =1/wC = 1.59kQ.
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I[)XL IOR IO IO
¢
o X loXc (4
IOXL
IR

By the figure we see that

Z = % = VR2 + (X1, — X¢)? = 1.52kQ

and that

tang = (X — X¢)/R — ¢ = —84.3"
The maximum current is Iyax = Vinax/Z = 138mA. This current will lead the
voltage by 84.3°.
6.34 As in the previous problem,

tang = (X — X¢)/R — ¢ =17.4°
Which implies that the voltage reaches a maximum 17.4° before the current.
6.35 Since Z = /R2 + (X — X¢)? the maximum current (smallest Z) will
be when X = X, — wees = \/% — 996224, Thus f = 159Hz.

6.36 At f =99.7MHz we need X¢ = X;, — C = 1/w?L = 1.82pF.

Solutions - 22
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V' soeo \/ A x 10~ 7N/A2)(8 854187817 x 10-12C2/N - m?)
— 8
= 2.99792458 x 10 \/ 02

2
= 2.99792458 x 10%4 [2 999792458 x 108m
S

7.2 x = Acos¢ — ¢ = cos ![z/A] = cos™1[1.4/3.2] = cos™1[0.4375] So
¢ = £1.12rad = +64.06°

7.1

7.3

(a) ¢ =0.

(b) 6= 1.

(©) 6= )2

(d) ¢ — 37/2.

(e) v =dx/dt = —Awsin(wt + ¢g). So

v _ —Awsin(0 + ¢p) — —wtang
Zo Acos(0+ ¢o) 0
So

$o = tan"* ;—123 = tan"!(—0.3) = —0.291 rad
0

Note that the other possible angle with the same tangent would be in the second
quadrant, but since our position and velocity are both positive we know that
our angle must be in the fourth quadrant.

7.4 The oscillator goes through a complete cycle when the phase increases by
2. Thus

2
Ap =21 — T =21 — w=%:251.3fe—v

7.5 A—2)\—3mT—65f—1sz—gradk——ml,v:
y(z,t) = 2cos(Zt — 2T z) = 2cos(1.0472 t — 2.0944 ).

76 M\ =c — /\—c/f—().l()m.

77 M =c — A=¢/f=319m.

7.8

m
s ?

(SIS

2
Ap =g — 1 = —kro+kry =k(r; —re) =k 2z = Mow

A
Also As = 2A; so that
A2 = A% + A% =+ 2A1A2 COS(¢2 — ¢1)

= A2 £ (24,)% + 24,(24)) cos(277r2x)

2
= A2 [5 + 4cos(;2x)}

Solutions - 23

(A/ADA2
9

14+

|
25 5.0 75 x(cm)

The maximum and minimum occur when Ar is an even and odd multiples of
A/2. So when the wavelength is lem the even multiples of 0.5cm are the lines
we drew. So we drew the maximums for a wavelength of lem. The minimums
would be half way between the lines we drew. If the wavlength is 2cm then half
the wavelength is 1cm and the maximum will occur at the lines with Ar = 0, +2
while the minimums will be a the lines with Ar = +1.

7.10 The maximum at 40 cm must be the maximum that corresponds to the
first even multiple, since it is the first maximum from the central maximum
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(the zeroth multiple). Thus
A
dsinf =2= =\
sin 5

But we can also tell by the geometry of the setup that

40cm 4
tanf = = —
300cm 30

Combining these we find that
A = dsin6 = (10cm) sin (tan™"(4/30)) = 1.32cm

7.11 The reflection from the front face of the bubble is air-water thus the
index of refraction change is low-high and there will be a reflection phase shift.
The front path has a phase of ¢4 = —kr + m. The reflection from the back
face of the bubble is water-air or high-low, so there is no reflection phase shift
on this path: ¢p = —kr. The phase difference between the paths is then
o4 —¢op =kAr+m = QA—’TAT—i—W = %2t—|—7r. Now we see that if ¢ < A then
2)\—72t ~ 0 and ¢4 — ¢p =~ m. So as the film gets thin the reflection becomes a
minimum not a maximum.

7.12 The path difference is A = v/d? + 12 — 1, where d is measured in meters.
For the minimum d, A = \/2. So,

A AN
\/dz+71271:5 — d2—<1+2> —1=.103.
—>d:.32m.

7.13 The reflections are both the same so there is no phase difference due to

the reflections and
AL
A(ZS = AQzl)peuth + A(Zsreﬂection = 2”7 + 0.
Since the reflections are a minimum we know that this phase difference is an
odd multiple 7. But since we want the minimum thickness this will be the first
odd multiple (1) and we find that
AL
2w Y
Also we know that the path difference is twice the thickness of the film so
that AL = 2t and we find using our condition above that

A
t= i % = 96nm.
7.14 This time the reflections are not the same and so we do have a half cycle

phase difference due to the reflection

= ().

AL
A¢p =27 Y

The reflections are strong so this must be constructive interference and the

+

Solutions - 24

phase difference is an even multiple of 7:

AL
A¢p =2m v + 7T =mn for m even
Again AL = 2t so that
2t
27Ty+ﬂ'=mﬂ' — At =(m - 1)\ for m even

But if m is even then k = m — 1 is odd so
4t = kN for k odd
Now the film is reflective for both red and green so
4t = kreaMeeq and 4t = EgreenAgreen
But ¢ is the same for both (there is only one film). Thus

’
Krea _ Agreen _ 5

/ ’
kgreen /\green = kred /\red

EN|

kgreen e
The lowest odd integer k’s that will give this ratio are kreq = 5 and Kgreen = 7.
Thus

t = kredMreq/4 = BAieq/4 = HArea/4n = 658nm

7.15 One path has no reflections so there is no phase shift of this path due to
reflections. The other path has two hard reflections and thus has two half cycle
phase shifts or a total of a full cycle phase shift due to reflections. Thus there
is effectively no phase difference (one cycle) due to the difference in reflection
of the two paths, and the phase difference is due totally to the path difference
(AL = 2d). Since we are looking for the first constructive interference we know

that AL
27‘(‘T =A¢p=21r — d=)\/2=280nm
7.16 We know that the path difference at an angle 6 from the central maxi-
mum is given by
AL = dsinf

where d is the slit spacing. Also we know that the phase difference caused by

this path difference is

AL

and that for interference maximums and minimums
Ap =nm
where n is an integer. Plugging the first and the third equations into the second

we get
dsin 6

nmw = 27

— dsinf,, = ng
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< D >
—n=5
—n=4
/ ——n=3 4
— n=2 X4
—n=1
I 0 “n-o0 ¥
Observation ———”| Intensity
Slit Screen Screen Pattern

From the geometry of the situation we see that

Ty

D

where x,, is the position of the nth extreme. Substituting this into our previous
expression we find

sin6,, =

Tn, A AD
df =ng T Ta=ngo = n(1.31mm)

Thus 22 — g = 2.62mm and x3 — 1 = 2.62mm.

7.17 As in the last problem we find
A A
dsinf, = n§ — sinf,, = nﬁ
We are given the speed and frequency so that we can find the wavelength
A =oT =v/f =0177m. With this wavelength we can find the angle of the
first maximum.

. A o
sin @y = 22—d — 0, =36.1

For the microwave: N

sin 6

d= =5.1cm

For d = 1pm:
A=dsinf =590 — f= % — 5.1 x 10'4Hz
7.18 Use the trig identity:
cosa—i—cosﬂ:2cos%(a+ﬁ)cos%(a—ﬁ).
a+ B =wt—kd +06+wt — kdy = 2wt — k(dy + da) + 6

Oé*/()):wtfkd1+57(wt7kd2):k(d27d1)+5

— Y1 +y2 = 2Acos % (2wt — k(dy + d2) + 9) cos% (k(d2 —dy1) +0)

= 2A cos (wt - g(dl +dy) + g) cos (g(dz —di)+ 5)

Solutions - 25

7.19 There is a path difference in getting from the source to the slits d sin 6,
and a path difference in going from the slits to the observation point so that the
total path difference is the sum of the two. We must be careful though since
the top ray goes farther on the first leg and shorter on the second leg so that

AL = (dsinfq) + (—dsinbs).
So we find the max and mins for even and odds as always: use
AL
A¢p = QWT and A¢ =nw
to find

A

We will have an interference maximum when n is even. So if n = 2m with m
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an integer we will have an interference maximum and
A
AL = 2m§ =mA — d(sinfy —sinfy) = mA

Thus
sin#; — sinfy = mA/d

7.20 The reflections are both the same so there is no phase difference due to
the reflections and
AL

Ad = Adpatn + Adrefiection = 2T 7

Since the reflections are a minimum we know that this phase difference is an
odd multiple 7. But since we want the minimum thickness this will be the first
odd multiple (1) and we find that
AL

2777 = ().
Also we know that the path difference is twice the thickness of the film so that
AL = 2t and we find using our condition above that
N A/n
4 4
7.21 This time the reflections are not the same and so we do have a half cycle
phase difference due to the reflection

+ 0.

t

= 96nm.

AL
A¢p =27 Y

The reflections are strong so this must be constructive interference and the
phase difference is an even multiple of :

+

AL
A¢p =21 Y + 7T =mn for m even
Again AL = 2t so that
2t
27ry—|—7r:m7r — 4t =(m—1)\"  for m even

But if m is even then k = m — 1 is odd so
4t = kN for k£ odd
Now the film is reflective for both red and green so
4t = KredNoeq and 4t = Kgreen Agreen
But ¢ is the same for both (there is only one film). Thus

li
/ kred o Agreen o 5

’ _
kgreen)\green = kred)‘red -

EN|

kgreen e
The lowest odd integer k’s that will give this ratio are kyeq = 5 and kgreen = 7.
Thus

t = kredMreq/4 = BAieq/4 = HArea/4n = 658nm

Solutions - 26

7.22 The figure below indicates the paths of the two waves.

e
| 1

X ——

L

The wave that reflects at the glass-air interface has no phase shift due to re-
flection. The air-glass reflection gains a phase m due to reflection. The path
difference between the two waves is 2 times the width of the gap (for near nor-
mal incidence). The width of the gap varies as the distance form the end. If z
is the distance for the left end (where the plates meet), then the width of the
gap is
= r—
Y IR
where ¢ = .05 mm is the gap at the right end. Thus, the total phase difference
between the two reflected rays is:

21 21 t

Agp = —(2y) = —(2x)—.

¢ 7r+)\(y) 7r+)\(x)L

For a bright fringe the phase difference must be a multiple of 27, so

27 27 t
2 = —(2y) = —(22)—.

™m 7r+)\(y) 7r+>\(x)L

x A Az A

— I "y T I T
where Az is the distance between fringes. The number of fringes along the
entire length will be:

L 2t

— = — =166.7 166.

Az X _’
7.23 dsinf = mA determines the angles where the bright maxima occur for
two slits separated by a distance d, while asin = mA determines the angles
where the dark minima occur for a single slit of width a.

7.24 This first minimum occurs when asinf = A. There is no angle that
satisfies this if A > a since sin @ is always less then one. Thus if ¢ < 637.8nm
there are no diffraction minima.
7.25 As in ID.4 we find the positions (z,) on the screen where the phase
difference is nm between the two sides of the slit, to be
_AD
Tn =N
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where a is the slit width. The difference is that now, (for a single slit), the
minima occur when this phase difference is an even multiples of w. The first

minimum occurs for n = 2 and the third minimum at n = 6 thus

AD AD AD
(3.0mm) =z — 22 = 6% 25 = 4% — a = 230pm

7.26 dsinf = X for the first order principal maximum. Compute 6 using

tangent:
488
0 =1t -1 — = ]_ . O’
an <1.72) o8

Using d = 1/5310 = 1.88 x 1076 m:
A= (1.88 x 107%)sin(15.8°) = 512nm

7.27 When the lanterns subtend the minimum angle 1,,¢cms at the observer
the images on the retina are just resolved. This means that the central maxi-
mum of one image falls on the first minima of the other. For a circular aperture
of diameter D the first diffraction minimum occurs when D sinf;, = 1.22\
where 6,y is the angle between the central maximum and the first minimum.
The angle between the images is the same as the angle between the objects
(think of the rays going through the center of the lens) so that Gianterns = Omin- If
we let x be the distance between the lanterns and L the distance to the lanterns
we find that sin 0y, = /L and thus that D/L = 1.22\ — z = 50cm.

7.28 It is obvious that the answer is 47.4429 since
ffooo f(t, t/)esin wt! ¢t
14+ _ 1

1
T

Solutions - 27
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8.1 Let us assume that the person is about d = 1.7m tall. The sun has a
diameter of D = 1.4 x 10%km and is at a distance of R = 1.5 x 108km. Note
that if the person was about three times larger she would be about the same
size as the sun. Thus if we let r be the distance between the person and the
camera then by similar triangles we have that

3d D

R
— r=3d—= = 546
. r o) m

8.2 By complementary angles we find that.

Now using Snell’s law we find
in(f+5) = nsin
sin —) =nsin —
S > ns S

and thus o

23 = 2 arcsin(n sin 5) -«

8.3 To Be Done

8.4 To Be Done

8.5 To Be Done

8.6 To Be Done

8.7 To Be Done

8.8 First note that for a diverging lens f < 0 so % < 0 also. Now use the thin
lens equation:

1 L 1
To L f
1 1 1
_ — - _ =
Lo f £
1 1 .
— < —= since x; > 0
Lo f
1 . 1
— <0 since — < 0
T, /

I
5
N
o

8.9
(a) From the magnification equation we find that
—8mm
o= —%xz = — g (10m) = 40mm

Solutions - 28

(b) Now that we have the object distance we can find the focal length from the
thins lens equation.

f ! + 1y ! + ! - 39.8
= 4L = — = 39.8mm
T, T 40mm 10, 000mm

8.10 Once again we invoke the thin lens and magnification equations to find
x; = —12.3cm and y,/y; = 0.615.

BT R——
Object Image F

8.11 For p =40 and f = +10, ¢ = 13.33. So, M = —1/3. Thus, the image is
located 13.33 cm behind the lens, it is inverted, and smaller.
8.12
(a) The ray diagram is sketched below. Here are calculations:
1 n 1 1 . 1 n 1 1
o pno S @ 20 10
The first image is 20 cm to the right of the first lens, which means it is an object
+15 from the second lens:
1 1
¢ 10 15
(b) The final image is real and upright.
(¢) The magnification is compound:

— ¢1 = 20cm.

— g2 = +30cm.

Final
Image

8.13 The ray diagram is below. Since the object is at the first lens’ focal
point, the image is at infinity. Since the image is at infinity, the object for the
second lens is at infinity, so it is formed at the second lens’ focal point.

Final
Image
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8.14 Since the image is upright h; > 0, and we are given h; = 4h,. But
% = —% = —4 — g = —4p. We see that p is negative which is as we expect

since the image is upright and thus virtual (virtual is when the image is where
the light does not actually go, this is on the far side of a mirror). Using the
thin lens equation % + % = % we find
1 1 1 3
—+-=—- — p=-f=30cm — g¢=—120cm
—4p p f 4
Let us check this with the ray diagram.

Image

<«—30cm 120cm
<—400m7

8.15 Use the thin lens equation %—i—% = % to find the image position

Thus since f = 30cm for p = 90cm we have ¢ = 45cm with Z—O = —

while for p = 20cm we have ¢ = —60cm with % =

8.16 Here’s what you should figure out using % + % = %, with f = R/2, and
M= =1
D
e p < f wvirtual, erect image with M > 1
o f<p<2f real inverted image with M > 1
e p>2f real, inverted image with M < 1
8.17 (b) The mirror must be concave, since a convex mirror will always pro-
duce a diminished, virtual image. (a) Using the magnification as 5.5:

M=-%—_55
p

with p = 2.1. Thus,
qg=—Mp=(5.5)(2.1) = —11.5cm.

Find f:

1 1 1

=24 — f=257 — R=2f=>513cm.
fp q

Solutions - 29
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