Physics 11 in a nutshell Thermal Physics

0	Equipartition theorem:	$\langle K \rangle = 3\frac{1}{2}kT$	mean kinetic energy, temperature
1	Heat capacity/specific heat:	$\frac{dU}{dT} = C = mc$	rate of change of internal energy with temperature
1	Latent heat:	$Q=m\ell$	heat for phase change per mass
1	Heat conduction:	$\frac{dQ}{dt} = kA\frac{dT}{dx}$	
1	Radiation:	$\frac{dQ}{dt} = \sigma \epsilon A T^4$	
		Electri	city
0	Coulomb's law:	$F = \frac{1}{4\pi\epsilon_0} \frac{ q \ Q }{r^2}$	
0	Electric field:	$\vec{E} = \frac{\vec{F}_q}{q}$	
0	Electric potential:	$\Delta V = \frac{\Delta U_q}{q}$	
0	Relation potential and field:	$\Delta V = -\vec{E}\cdot\vec{\Delta}\ell$	
1	Point charge electric potential:	$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$	
1	Capacitance:	$Q = CV_C$	
2	Energy stored in a capacitor:	$U = \frac{1}{2}CV^2$	
0	Electric current:	$I = \frac{dq}{dt}$	
1	Ohm's law:	$V_R = IR$	
0	Electrical power:	P = IV	
0	Kirchhoff's junction rule:	$\sum I = 0$	
0	Kirchhoff's loop rule:	$\sum V = 0$	
2	Effective resistance:	$R_S = R_1 + R_2 \text{and} $	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$
2	RC circuits:	$V_C(t) - V_s = (V_C(0))$	$(-V_s)e^{-t/RC}$

Magnetism

0 Magnetic Force:

 $\vec{F}_B = q\vec{v}\times\vec{B}$

 $\vec{F}_B = I\vec{L}\times\vec{B}$

- 0 Magnetic Force:
- 0 Right Arm Rule:

0 Right Hand Rule:

1

0

0

0

0

direction of field caused by current

direction of magnetic force relative to velocity and field

force on charge, velocity, field

force on current, length, field

Field due to a current:	$B = \alpha I$	magnitic field is proportional to current
Magnetic Flux:	$\Phi_B = \vec{B} \cdot \vec{A}$	definition of flux
EMF:	$\mathcal{E} = \oint ec{E} \cdot ec{d\ell}$	voltage around a loop
Faradays Law:	${\cal E}=-rac{d\Phi_B}{dt}$	field caused by changing flux
Lenzs law:	induced current opposes change	direction of field
	Electromagnetic Waves	

1	Energy density:	$\langle u \rangle = \frac{1}{2} \epsilon_0 E^2$	energy density of EM field
0	Energy flux density:	$\langle I \rangle = \langle u \rangle c$	intensity of EM field
0	Radiation Pressure:	$P = \langle u \rangle$	radiation pressure of EM field
0	Wave speed:	$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \frac{\lambda_0}{T} = \lambda_0 f$	
0	Sinusoidal Wave:	$E = E_0 \cos(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t) = E_0 \cos(kx - \omega t)$	with $k = \frac{2\pi}{\lambda}$ and $\omega = \frac{2\pi}{T}$
		Ray Optics	

0	Index of refraction:	$n = \frac{c}{v} \longrightarrow \lambda = \frac{\lambda_0}{n}$
0	Snells law:	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
0	Thin lens equation:	$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ (continued)

Wave Optics

2	Intensity of single slit:	$I = I_0 \operatorname{sinc}^2 \left(\pi \frac{a}{\lambda} \sin \theta \right) \approx I_0 \operatorname{sinc}^2 \left(\pi \frac{a}{\lambda} \frac{x}{L} \right)$	
2	Intensity of double slit:	$I = I_0 \operatorname{sinc}^2 \left(\pi \frac{a}{\lambda} \sin \theta \right) \cos^2 \left(\pi \frac{d}{\lambda} \sin \theta \right) \approx I_0 \operatorname{sinc}^2 \left(\pi \frac{a}{\lambda} \frac{x}{L} \right) \cos^2 \left(\pi \frac{d}{\lambda} \frac{x}{L} \right)$	
0	Sum of two waves:	$E_0^2 = E_{0a}^2 + E_{0b}^2 + 2E_{0a}E_{0b}\cos(\Delta\phi)$	amplitude of sum of two waves
0	Sum of two waves:	$I = I_a + I_b + 2\sqrt{I_a I_b} \cos(\Delta \phi)$	intensity of sum of two waves
0	Phase due to path:	$\Delta \phi = \frac{2\pi}{\lambda} (r_b - r_a)$	
1	Phase due to reflection:	$\Delta \phi = 0$ or π	