Physics 11 in a nutshell Thermal Physics

0	Equipartition theorem:	$\bar{K} = 3\frac{1}{2}kT$	mean kinetic energy, temperature		
1	Heat capacity/specific heat:	$Q = C \ \Delta T = mc \ \Delta T$	heat, heat capacity, temperature change		
1	Latent heat:	$Q=m\ell$	Heat, mass		
1	Heat conduction:	$\frac{dQ}{dt} = kA\frac{dT}{dx}$			
1	Radiation:	$\frac{dQ}{dt} = \sigma \epsilon A T^4$			
	Electricity				
0	Coulomb's law:	$F = \frac{1}{4\pi\epsilon_0} \frac{ q \ Q }{r^2}$			
0	Electric field:	$\vec{E} = \frac{\vec{F}_q}{q}$			
0	Electric potential:	$\Delta V = \frac{\Delta U_q}{q}$			
0	Relation potential and field:	$\Delta V = -\vec{E}\cdot\vec{\Delta}\ell$			
1	Point charge electric potential:	$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$			
1	Capacitance:	$Q = CV_C$			
2	Energy stored in a capacitor:	$U = \frac{1}{2}CV^2$			
0	Electric current:	$I = \frac{dq}{dt}$			
1	Ohm's law:	$V_R = IR$			
0	Electrical power:	P = IV			
0	Kirchhoff's junction rule:	$\sum I = 0$			
0	Kirchhoff's loop rule:	$\sum V = 0$			
2	Effective resistance:	$R_S = R_1 + R_2$ and $\frac{1}{R_P} = \frac{1}{R_1}$	$+\frac{1}{R_2}$		
2	Effective capacitance:	$C_P = C_1 + C_2$ and $\frac{1}{C_R} = \frac{1}{C_1}$	$+\frac{1}{C_2}$		
2	RC circuits:	$V_C(t) - V_s = (V_C(0) - V_s)e^{-t/H}$	RC		

Magnetism

0	Magnetic Force:	$\vec{F}_B = q\vec{v} \times \vec{B}$	force on charge, velocity, field			
0	Magnetic Force:	$\vec{F}_B = I \vec{L} \times \vec{B}$	force on current, length, field			
0	Right Arm Rule:	$\hat{F} = \hat{v} \times \hat{B}$ dire	ction of magnetic force relative to velocity and field $\widetilde{}$			
0	Right Hand Rule:	$\hat{B} = \hat{r} \times \hat{I}$	direction of field caused by current			
1	Field due to a current:	$B = \alpha I$	magnitic field is proportional to current			
0	Magnetic Flux:	$\Phi_B = \vec{B} \cdot \vec{A}$	definition of flux			
0	EMF:	${\cal E}=-\oint ec E\cdot ec d\ell$	voltage around a loop			
0	Faradays Law:	${\cal E}=-rac{d\Phi_B}{dt}$	field caused by changing flux			
0	Lenzs law:	induced current oppo	ses change direction of field			
	Electromagnetic Waves					
1	Energy density:	$\bar{u} = \frac{1}{2}\epsilon_0 E^2$	energy density of EM field			
0	Energy flux density:	$\bar{I} = \bar{u}c$	intensity is energy density times speed			
0	Wave speed:	$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \frac{\lambda}{T} = \lambda f$	$=rac{\omega}{k}$			
0	Sinusoidal Wave:	: $E = E_0 \cos(2\pi \frac{x}{\lambda} - 2\pi \frac{t}{T}) = E_0 \cos(kx - \omega t) = E_0 \cos(k(x - ct))$				
		Wave O ₁	otics			
0	Sum of two waves:	$E^2 = E_1^2 + E_2^2 + 2E_1$	$E_2 \cos(\Delta \phi)$ amplitude of sum of two waves			
0	Phase due to path:	$\Delta \phi = 2\pi \frac{\Delta x}{\lambda}$				
1	Phase due to reflection:	$\Delta \phi = 0$ or π Ray Op	tics			
0	Index of refraction:	$n = \frac{c}{v}$				
0	Snells law:	$n_1 \sin \theta_1 = n_2 \sin \theta_2$				
0	Thin lens equation:	$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$				

Quantum

0 **Energy-frequency**: E = hf $p = \frac{h}{\lambda}$ 0 Momentum-wavelength: $E_{n_{\text{initial}}} + hf = E_{n_{\text{final}}}$ Absorption: 1 $E_{n_{\text{initial}}} = E_{n_{\text{final}}} + hf$ Emission: 1 $N\propto P\propto \psi^2$ 0 **Probability**: $\Delta x \Delta p \ge \frac{\hbar}{2} = \frac{h}{4\pi}$ Uncertainty principle: 0

Nuclear

Common Nuclear Changes:

• α -decay: Emission of a helium nucleus,

$$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$$

• β -decay: Emission of an electron,

$$^{A}_{Z} \mathbf{X} \rightarrow ^{A}_{Z+1} \mathbf{Y} + e^{-} + \nu$$

this is the conversion of a neutron into a proton and electron $n \to p + e^- + \nu$

• γ -decay: Emission of a high energy photon.

$${}^{A}_{Z}\mathbf{X}^{*} \rightarrow {}^{A}_{Z}\mathbf{X} + \gamma$$

Nucleus does not change type or isotope but does drop to a lower energy state.

- 0 Decay: $N = N_0 e^{-\lambda t} = N_0 2^{-t/T_{1/2}}$
- 0 Decay Rate:

Half life:

1

 $N(T_{1/2}) = \frac{1}{2}N_0 \longrightarrow \lambda T_{1/2} = \log 2$

 $R = -\frac{dN}{dt} = \lambda N_0 \ e^{-\lambda t} = R_0 \ e^{-\lambda t}$