In-class problems, Mar 2, 2020

23.4 - 23.6 applying Gauss's law

1. Consider an infinite line of charge with linear charge density λ . Here, we use Gauss's law to determine an expression for the magnitude of its electric field E.

* * * * * * * * * * * * * * * * * * *

(a) Sketch the electric field lines from the line charge.

(b) Sketch a Gaussian surface around this line charge. Make the surface so that the $d\vec{A'}$ s have a simple direction relative to \vec{E} ; or that \vec{E} has the same magnitude for all the $d\vec{A'}$ s.

(c) Evaluate $\oint \vec{E} \cdot d\vec{A}$. Keep *E* as *E*, since we're trying to find an expression for it.

(d) Evaluate $q_{\text{enclosed}}/\epsilon_0$. Write q_{enclosed} in terms of λ and the geometry of your surface

(e) Solve for E

2. Consider a solid sphere of radius a, with a uniformly distributed charge, $\rho = Q_{\text{total}}/\frac{4}{3}\pi a^3$. Use Gauss's law to determine the magnitude of the electric field

- (a) outside the sphere, r > a.
- (b) inside the sphere, r < a.
- (c) Describe E's behavior inside the sphere, use words. Describe E's behavior outside the sphere. Use words.

Due Tue Mar 3, 2020, beginning of class

Skim 23.3 a charged isolated conductor

1. Excess charge is placed on a solid piece of material. Once the system comes to equilibrium, where can the excess charge be found if the material is a

(a) conductor. Use words and add a sketch to further explain what you mean.

(b) insulator. Use words and add a sketch to further explain what you mean.

2. What's the magnitude of the electric field inside a solid piece of conducting material?