## h-class problems, Thu Feb 27, 2020

## 23.1 23.2 Electric flux, Gauss's law

1. Point charge +q is at the center of a sphere of radius r.



- (a) Sketch four dA's and their vectors  $(d\vec{A}$ 's) on the surface (they're vectors, so include the arrowheads).
- (b) Write down an expression for  $\vec{E}$  for a point charge. Include the fact that its direction is  $+\hat{r}$ .
- (c) Write down an expression for  $d\vec{A}$ . Its magnitude is dA. Add the appropriate unit vector to it.
- (c) Calculate  $\oint \vec{E} \cdot d\vec{A}$ . (Don't use Gauss's law. Do the integral.)
- 2. Sometimes the integral  $\int \vec{E} \cdot d\vec{A} = \int EA \cos \theta$  can be easily evaluated because E and/or  $\theta$  doesn't depend on dA. That is, it's the same for every dA, and can be pulled out of the integral. For each of the following surfaces, identify whether E,  $\theta$ , both, or neither is a constant with respect to the integral.



3. A sock comes out of the dryer with a trillion (10<sup>12</sup>) excess electrons. Calculate the electric flux through a surface surrounding the sock. (Wolfson 21-26)

4. Calculate the net electric flux through the closed surfaces marked (a), (b), (c), and (d).



5. A butterfly net is in a uniform electric field of magnitude 3.0 N/C. The rim has a radius of 11cm. The net contains no net charge. Calculate the electric flux through just the netting. (HRW 24-3)



## Due Mon Mar 2, 2020, beginning of class

23.4, 23.5, 23.6

Skim 23.4, 23.5, 23.6

- 1. (a) Sketch an infinite line charge and its electric field.
  - (b) Write the equation for its  $\vec{E}$
- 2. (a) Sketch sheet of charge and its electric field.
  - (b) Write the equation for its  $\vec{E}$
- 3. (a) Sketch a spherical shell of charge and its electric field
  - (b) Write the equation for  $\vec{E}$  outside the shell; write  $\vec{E}$  for inside the shell.
- 4. These sections use symmetry. Write a description (definition, or example) and give a sketch for each of the following:
  - (a) rotational symmetry
  - (b) translational symmetry
  - (c) reflection symmetry.