class problems, Wed Feb 26, 2020

23.1 Electric flux

1. The cube below has sides of length $s=2\mathrm{m}$. The electric field is 9 N/C.

- (a) Calculate the flux through each of the cube faces (A, B, C) in figure (a).
- (b) Repeat for the second orientation (b).
- 2. A flat surface A with an area 0.14m^2 lies in the x-y plane in a uniform electric field $\vec{E}=(5.1\hat{i}+2.1\hat{j}+3.5\hat{k})\text{N/C}$.
 - (a) Sketch the surface A, the vector \vec{A} that represents this surface, and the electric field.
 - (b) Write down \vec{A} . Use component form (that is $\hat{i}, \hat{j}, \hat{k}$) (c) Calculate the flux through this surface.
- 3. An infinite line of charge has an electric field with a magnitude of $E=\lambda/2\pi\epsilon_0 r$, where r is the distance from the line.

Part of the line charge is surrounded by a closed cylinder of radius a and length ℓ , centered along the line.

Determine an expression for the net flux through the cylinder surface. Use the terms given above (λ, π, a, ℓ) , but not r).

4. A point charge sits in the center of a spherical surface. Calculate the net flux through the surface if the

(a) charge is +3nC and radius is 2m

5/5

(b) charge is +3nC and radius is 4m

(c) charge is +3nC and radius is 8m

(c) suppose the charge is -3nC. What happens to your results?

Due Thu Feb 27, 2020, beginning of class

23.2 Gauss's law

Read 23.2.

- 1. What is Gauss's law? Write down 1-2 sentences. You're welcome to take this straight out of any text or website, but certainly give credit where it's due.
- (a) Write down an equation that describes Gauss's law.
 - (b) For every quantity in this equation, write down its name and its units.
 - (c) Sketch a diagram that helps illustrate the quantities used in Gauss's law. Label your diagram.