Ruge of E

In-class problems, Tue Feb 25, 2020

Electric field: recap and synthesis

1. Determine the magnitude and direction of the electric field at point P.

2. Determine the magnitude and direction of the electric field at point *P*. Leave your answer as an integral, but simplify as much as possible.

3. A conducting sphere, of radius a and total charge -Q, is a distance 2a away from an infinitely charged line with charge density $+\lambda$.

- (a) Sketch, on the figure, a possible spot where a charged object would not feel a force.
- (b) Determine an expression for this position as a distance away from the infinite line. Use the given variables (a, q, λ) . (Use the results for E for an infinite line, and a uniformly charged sphere.
- 4. The electric field created by 3 charges are shown below.

- (a) Draw the direction of the electric field at points S and T.
- (b) Is the field stronger at S or T?

- (c) Identify each of the charges as positive or negative
- (d) Which charge has the largest magnitude?
- 5. Consider the electric dipole below. Determine
 - (a) the magnitude and direction of the electric field at point P.
 - (b) an expression for \vec{E} in the limiting case of $r \gg d$.

(HRW 22-19)

Due Wed Feb 26, 2020

23.1 Electric flux

Read 23.1 electric flux

Reminder from last semester: There are two ways to calculate the scalar (or dot) product. The first uses components, while the second uses magnitudes and the angle between the two vectors:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

 $\vec{A} \cdot \vec{B} = AB \cos \theta$

1. (Review) Vector \vec{A} as a magnitude of 6.0 units, vector \vec{B} has a magnitude of 7.00 units, and $\vec{A} \cdot \vec{B}$ has a value of 14.0. What is the angle between the directions of \vec{A} and \vec{B}

(HRW 3-39)

2. (Review) The work done by a constant force is given by $W = \vec{F} \cdot \Delta \vec{r}$.

A tugboat pushes a cruise ship with force $\vec{F} = 1.2\hat{i} + 2.3\hat{j}$ MN. The ship moves along a straight path with displacement $\Delta r = 380\hat{i} + 460\hat{j}$ m. Calculate the work done by the tugboat on the cruise ship.

(Wolfson ex6.3)

- 3. Write down equation 23-3
 - (a) For every quantity in this equation: give its name and units (some quantities may be unit-less!).
 - (b) Sketch a diagram that helps explain this equation. Label the quantities. If a quantity is a vector, note its direction (arrowhead).