In-class problems, Thu Feb 20, 2020

22.4 22.5, E due to a line of charge, charged disk

1. from yesterday...

Consider a half circle. It has a total charge of Q and a radius a. Determine the electric field at the circle's center.

- (a) Sketch what this looks like. Include a couple of dq's, the distance r, and any angle θ that might be helpful.
- (b) Sketch $d\vec{E}$'s from your two dq's. What component(s) of the resulting \vec{E} do you need to calculate? You'll have to choose the dq's wisely
- (c) Write your integral and substitute in the appropriate dq. Since this is an arc stay in polar coordinates (r, θ) , and use $ds = rd\theta$ (which comes from $s = r\theta$). Don't change to rectangular coordinates (x, y) so that means keeping $\cos \theta$ or $\sin \theta$ as is.
- (c) Calculate E. You'll be able to do the integral.
- 2. A straight wire of length L has a uniform charge density λ . Determine the electric field at point P_1 , a point somewhere along the y-axis.

- (a) Sketch what this looks like. Include a dq, the distance r, and any angle θ that might be helpful.
- (b) Sketch $d\vec{E}$ from your dq. What component(s) of $d\vec{E}$ do you need to calculate?
- (b) Calculate \vec{E} . You're welcome to leave your answer as integrals, but include limits, and simplify as much as possible (in particular, move all constants out of the integral).
- 3. A ring of radius a and total charge Q, has an electric field of

$$E = \frac{kQx}{(x^2 + a^2)^{3/2}}$$

along its axis (that is, down the middle).

- (a) Determine the electric field at the center of the ring.
- (b) Determine E in the limit that $x \gg a$. Provide an expression (that is, an equation with some kind of dependence on x).
- 4. You design an apparatus in which a uniformly charged disk of radius R and total charge Q_{disk} produces an electric field. The field is important at P, a distance 2R above the center of the disk. Cost analysis suggests that you switch to a ring with the same radius.

Calculate the amount of charge the rings needs, Q_{ring} , that would lead to the same electric field at P.

Due Mon Feb 24, 2020, beginning of class

22-6, 22-7 point charges and dipoles in E

Read 22-6, 22-7.

1. (a) Write down equation 22-28.

Describe what this equation says about what happens to a point charge q when it's in an electric field \vec{E} .

- (b) Use words.
- (c) Use a sketch. Sketch a uniform electric field. Place a positive point charge in the field. Sketch the force. Repeat for a negative point charge.
- 2. Describe what happens to a dipole in a uniform electric field. Use words. You're welcome to use straightforward language. You don't have to use words like torque or center of mass,