In-class problems, Mon Feb 17, 2020

22.1 22.2 electric field: definition, line, from a point charge

1. A test charge of +3pC is at point P. By measuring the force on the test charge, it's determined that there's a pre-existing electric field of 4~kN/C to the right at point P.

The test charge is replaced by a -6pC test charge. What happens to the pre-existing electric field? It

- (a) is unaffected.
- (b) switches direction
- (c) gets stronger
- (d) B and C
- (e) changes, but we can't tell how.
- 2. In a lightning storm, a charged raindrop carrying $+10\mu\mathrm{C}$ of charge experiences an electrical force of 0.30N the +z direction. Calculate the
 - (a) electric field at this point.
 - (b) force on a -5μ C raindrop.

For both, provide magnitude and direction. Note that fields of 10^2 , 10^3 N/C are common. Fields of 3 MN/C will tear electrons from air molecules.

- 3. The electron in a hydrogen atom is 52.9pm from the proton. At this distance, what's the strength of the electric field due to the proton?
- 4. A point charge of $-10\mu C$ is at (-3, -1).
 - (a) Sketch this problem. (b) Calculate its electric field at (2,2). Give a magnitude and direction, or components.
 - (c) Determine the position (x,y) at which the electric field will be 36 kN/C pointing at -30°.
- 5. Electric field lines in two regions of space are given below. Draw the electric field vectors at the dots. The length of the vector should indicate the relative strength of \vec{E} at that point.

Due Tue Feb 12, 2020, beginning of class

22-2, 22-3 E from point charges, dipoles

Read 22.2, 22.3

- 1. Electric fields are vectors. They obey the *principle* of superposition. Write an equation that conveys the *principle* of superposition for electric fields.
- 2. For each figure, draw and label the net electric field vector, $\vec{E}_{\rm net}$ at each of the points marked with a dot. Or, if appropriate, label the dot $\vec{E}_{\rm net}=0$. The lengths of your vectors should indicate the magnitude of \vec{E} at each point.

- 3. What's an electric dipole? Describe it
 - (a) in words (one sentence)
 - (b) by sketching a picture.

What's the electric field from a dipole? Give

- (c) an equation
- (d) a sketch of the field lines