Find the three currents I_1 , I_2 and I_3

Find the three currents I_1 , I_2 and I_3

Solution: First we add the plus and minus signs to the diagram.

Now we write out two Kirckhhoff's loop rules and one junction rule.

$$(5V) - V_3 - V_1 = 0$$

 $V_3 + V_2 - (9V) = 0$
 $I_1 + I_2 - I_3 = 0$

We now use Ohm's Law three times.

$$V_1 = (3\Omega)I_1$$
$$V_2 = (2\Omega)I_2$$
$$V_3 = (7\Omega)I_3$$

Putting these three equations into the original three equations we find

$$(5V) - (7\Omega)I_3 - (3\Omega)I_1 = 0$$

(7\Omega)I_3 + (2\Omega)I_2 - (9V) = 0
$$I_1 + I_2 - I_3 = 0$$

Dividing the first two equations by 1Ω we get the following.

$$(5A) - 7I_3 - 3I_1 = 0$$

$$7I_3 + 2I_2 - (9A) = 0$$

$$I_1 + I_2 - I_3 = 0$$

This is three equations in the three unknown currents. Solving the last of these equations for I_3 we have

$$I_3 = I_1 + I_2.$$

We can put this into the first two equations to eliminated I_3 .

$$(5A) - 7(I_1 + I_2) - 3I_1 = 0$$

7(I_1 + I_2) + 2I_2 - (9A) = 0

This gives us two equations in two unknowns. We can simplify them a little

to get the following.

$$(5A) - 10I_1 - 7I_2 = 0$$

7I_1 + 9I_2 - (9A) = 0

This is two equations in the two unknowns. Solving the last of these equations for I_2 we have

$$I_2 = (1A) - \frac{7}{9}I_1.$$

Putting this into the first equation we find

$$(5A) - 10I_1 - 7\left((1A) - \frac{7}{9}I_1\right) = 0$$

$$(45A) - 90I_1 - 7\left((9A) - 7I_1\right) = 0$$

$$\longrightarrow (45A - 63A) + (49 - 90)I_1 = 0$$

$$\longrightarrow -(18A) - 41I_1 = 0$$

$$\longrightarrow I_1 = -\frac{18}{41}A$$

We can put this back into our expression for I_2 to find

$$I_2 = (1A) - \frac{7}{9}I_1 = (1A) - \frac{7}{9}(-\frac{18}{41}A) = \frac{55}{41}A.$$

We can put this into our expression for I_3 to find

$$I_3 = I_1 + I_2 = -\frac{18}{41}A + \frac{55}{41}A = \frac{37}{41}A$$